{"title":"Алгебры Ли и интегрируемые системы: эластики и геодезические качения","authors":"Велимир Джюрджевич, Velimir Jurdjevic","doi":"10.4213/tm4301","DOIUrl":null,"url":null,"abstract":"Настоящая работа продолжает имеющее долгую историю исследование увлекательных связей алгебр и групп Ли с задачами прикладной математики. Оно берет свое начало с открытия того, что математический формализм, инициированный Г. Кирхгофом для моделирования равновесных конфигураций упругого стержня, можно распространить на группы изометрий некоторых римановых многообразий с помощью методов теории управления и принципа максимума, что приводит к большому классу гамильтоновых систем, которые по-новому связывают геометрию с физикой. Основное внимание в работе уделяется связи аффинно-квадратичной задачи типа Кирхгофа с задачей о геодезической качения, возникающей при качении однородных многообразий $G/K$, снабженных $G$-инвариантной метрикой, по их касательным пространствам. Показано, что между этими двумя задачами существует замечательная связь, проявляющаяся в общей изоспектральной кривой в алгебре Ли $\\mathfrak g$ группы $G$. По ходу рассуждений будет также раскрыта роль кривизны для теории эластик.","PeriodicalId":134662,"journal":{"name":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tm4301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Настоящая работа продолжает имеющее долгую историю исследование увлекательных связей алгебр и групп Ли с задачами прикладной математики. Оно берет свое начало с открытия того, что математический формализм, инициированный Г. Кирхгофом для моделирования равновесных конфигураций упругого стержня, можно распространить на группы изометрий некоторых римановых многообразий с помощью методов теории управления и принципа максимума, что приводит к большому классу гамильтоновых систем, которые по-новому связывают геометрию с физикой. Основное внимание в работе уделяется связи аффинно-квадратичной задачи типа Кирхгофа с задачей о геодезической качения, возникающей при качении однородных многообразий $G/K$, снабженных $G$-инвариантной метрикой, по их касательным пространствам. Показано, что между этими двумя задачами существует замечательная связь, проявляющаяся в общей изоспектральной кривой в алгебре Ли $\mathfrak g$ группы $G$. По ходу рассуждений будет также раскрыта роль кривизны для теории эластик.