Early Forest Fire Detection Based on Deep Learning

Mengna Li, Youmin Zhang, Lingxia Mu, Jing Xin, Ziquan Yu, Han Liu, Guo Xie
{"title":"Early Forest Fire Detection Based on Deep Learning","authors":"Mengna Li, Youmin Zhang, Lingxia Mu, Jing Xin, Ziquan Yu, Han Liu, Guo Xie","doi":"10.1109/IAI53119.2021.9619342","DOIUrl":null,"url":null,"abstract":"Early fire detection is very important for preventing forest fires. In this paper, a new image-based fire detection algorithm, named as h-EfflcientDet, is proposed to complete the task of early forest fire detection. h-EfflcientDet is based on a popular deep learning approach EfficientDet (scalable and efficient object detection) by replacing the nonlinear activation function swish of the EfficientDet with the hard version of swish and combing also with an efficient feature fusion network BIFPN (bidirectional feature pyramid network), which can improve significantly the efficiency of the fire detection model. The experiment results show that the proposed h-EfficientDet can detect the fire in real-time with the detection speed of 21 FPS. The detection accuracy is up to 98.35% with a low miss detection rate.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Early fire detection is very important for preventing forest fires. In this paper, a new image-based fire detection algorithm, named as h-EfflcientDet, is proposed to complete the task of early forest fire detection. h-EfflcientDet is based on a popular deep learning approach EfficientDet (scalable and efficient object detection) by replacing the nonlinear activation function swish of the EfficientDet with the hard version of swish and combing also with an efficient feature fusion network BIFPN (bidirectional feature pyramid network), which can improve significantly the efficiency of the fire detection model. The experiment results show that the proposed h-EfficientDet can detect the fire in real-time with the detection speed of 21 FPS. The detection accuracy is up to 98.35% with a low miss detection rate.
基于深度学习的早期森林火灾探测
早期火灾探测对于预防森林火灾非常重要。本文提出了一种新的基于图像的火灾检测算法h-EfflcientDet,用于完成森林火灾的早期检测任务。h-EfflcientDet基于一种流行的深度学习方法effentdet(可扩展和高效的目标检测),将effentdet的非线性激活函数swish替换为swish的hard版本,并结合高效的特征融合网络BIFPN(双向特征金字塔网络),可以显著提高火灾检测模型的效率。实验结果表明,所提出的h-EfficientDet可以实时检测到火灾,检测速度为21 FPS。检测准确率高达98.35%,漏检率低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信