A Method for Periodical Phenomena Analysis

G. Constantinescu, C. Strîmbu, M. Pearsica, L. Miron
{"title":"A Method for Periodical Phenomena Analysis","authors":"G. Constantinescu, C. Strîmbu, M. Pearsica, L. Miron","doi":"10.1109/SOFA.2007.4318319","DOIUrl":null,"url":null,"abstract":"This paper is proposing a statistical method, useful for analyzing periodical phenomena whose equations are impossible to be solved analytically. The input data consist in a collection of tabled functions, (numerically determined), named further database. Least square method based algorithms, presented in the first part of the paper, are applied to this database. First, a trigonometric regression algorithm will find the approximating Fourier coefficients. Finally a multiple regression algorithm to fit a polynomial type function is introduced. Its input data are the Fourier coefficients, the Fourier analysis results, or whatever collection of experimental data corresponding to a set of variables. The final part of the paper is dedicated to an example, illustrative for these.","PeriodicalId":205589,"journal":{"name":"2007 2nd International Workshop on Soft Computing Applications","volume":"655 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Workshop on Soft Computing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOFA.2007.4318319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is proposing a statistical method, useful for analyzing periodical phenomena whose equations are impossible to be solved analytically. The input data consist in a collection of tabled functions, (numerically determined), named further database. Least square method based algorithms, presented in the first part of the paper, are applied to this database. First, a trigonometric regression algorithm will find the approximating Fourier coefficients. Finally a multiple regression algorithm to fit a polynomial type function is introduced. Its input data are the Fourier coefficients, the Fourier analysis results, or whatever collection of experimental data corresponding to a set of variables. The final part of the paper is dedicated to an example, illustrative for these.
一种周期现象分析方法
本文提出了一种统计方法,用于分析方程无法解析解的周期性现象。输入数据包含在一个表函数集合中(数值确定),命名为further database。本文第一部分提出的基于最小二乘法的算法应用于该数据库。首先,三角回归算法将找到近似的傅立叶系数。最后介绍了一种拟合多项式型函数的多元回归算法。它的输入数据是傅里叶系数,傅里叶分析结果,或者任何与一组变量相对应的实验数据集合。论文的最后一部分是一个例子,说明这些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信