A Kinect based gesture recognition algorithm using GMM and HMM

Yang Song, Yu Gu, Peisen Wang, Yuanning Liu, A. Li
{"title":"A Kinect based gesture recognition algorithm using GMM and HMM","authors":"Yang Song, Yu Gu, Peisen Wang, Yuanning Liu, A. Li","doi":"10.1109/BMEI.2013.6747040","DOIUrl":null,"url":null,"abstract":"Gesture recognition is a quite promising field in robotics and many Human-Computer Interaction (HCI) related areas. This research uses Microsoft® Kinect to capture the 3D position data of joints, and uses Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) to model full-body gestures. We propose a gesture recognition algorithm to segment gestures from real-time data flow, and finally achieved to recognize predefined full-body gestures in real-time. This proposed method gives a high recognition rate of 94.36%, indicating the capability of the new method.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6747040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Gesture recognition is a quite promising field in robotics and many Human-Computer Interaction (HCI) related areas. This research uses Microsoft® Kinect to capture the 3D position data of joints, and uses Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) to model full-body gestures. We propose a gesture recognition algorithm to segment gestures from real-time data flow, and finally achieved to recognize predefined full-body gestures in real-time. This proposed method gives a high recognition rate of 94.36%, indicating the capability of the new method.
基于Kinect的基于GMM和HMM的手势识别算法
手势识别是机器人技术和许多人机交互(HCI)相关领域中一个非常有前途的领域。本研究使用Microsoft®Kinect捕获关节的三维位置数据,并使用高斯混合模型(GMM)和隐马尔可夫模型(HMM)对全身手势进行建模。我们提出了一种从实时数据流中分割手势的手势识别算法,最终实现了对预定义全身手势的实时识别。该方法的识别率高达94.36%,表明了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信