Modified Method Approximation of Empirical Dependency

L. Stefurak
{"title":"Modified Method Approximation of Empirical Dependency","authors":"L. Stefurak","doi":"10.1109/eastconf.2019.8725363","DOIUrl":null,"url":null,"abstract":"The article presents a practical problem that arises in a number of applied areas in the approximation of experimental data using the least squares method. In a number of engineering applications there is a need to present these data in the form of empirical formulas of power, exponential and other types, to present the desired dependence in the form of a polynomial. In this case, use the alignment of the original variables. After the transition to the main variables, the proximity of the experimental points to the empirical polynomial does not determine this proximity in the final relation. The paper presents an amendment that ensures this proximity, provides specific types of empirical formulas for which the corresponding systems of corrected normal equations are obtained. The considered example of application of the refined technique leads to a more accurate approximation of empirical dependence.","PeriodicalId":261560,"journal":{"name":"2019 International Science and Technology Conference \"EastСonf\"","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Science and Technology Conference \"EastСonf\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eastconf.2019.8725363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The article presents a practical problem that arises in a number of applied areas in the approximation of experimental data using the least squares method. In a number of engineering applications there is a need to present these data in the form of empirical formulas of power, exponential and other types, to present the desired dependence in the form of a polynomial. In this case, use the alignment of the original variables. After the transition to the main variables, the proximity of the experimental points to the empirical polynomial does not determine this proximity in the final relation. The paper presents an amendment that ensures this proximity, provides specific types of empirical formulas for which the corresponding systems of corrected normal equations are obtained. The considered example of application of the refined technique leads to a more accurate approximation of empirical dependence.
经验依赖的修正近似方法
本文提出了在使用最小二乘法逼近实验数据时,在许多应用领域中出现的一个实际问题。在许多工程应用中,需要以幂、指数和其他类型的经验公式的形式来表示这些数据,以多项式的形式来表示所需的相关性。在这种情况下,使用原始变量的对齐方式。在过渡到主要变量之后,实验点与经验多项式的接近程度并不能决定最终关系中的接近程度。本文提出了一种保证这种接近性的修正方法,并提供了一些特定类型的经验公式,这些经验公式得到了相应的修正正规方程的系统。经过考虑的应用精细技术的例子导致更准确的经验依赖的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信