Position sensorless adaptive positioning servo system based on DyCE principle with adaptive control input synthesis using convolutional integration for differential calculation

Naoki Kawamura, M. Hasegawa
{"title":"Position sensorless adaptive positioning servo system based on DyCE principle with adaptive control input synthesis using convolutional integration for differential calculation","authors":"Naoki Kawamura, M. Hasegawa","doi":"10.1109/PEDS.2017.8289281","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive positioning control of a servo system using a position sensorless controlled interior permanent magnet synchronous motor (IPMSM), in which the proposed adaptive system is based on Dynamic Certainty Equivalence (DyCE) principle using the convolutional integration for differential calculation. Generally, the adaptive control system requires strictly positive real (SPR) property for a certain transfer function of the control object for stable parameter identification. This controlled system has three relative degree, however this paper applies DyCE principle to reduce the relative degree, and to realize the stable parameter identification. In this approach, the control input synthesis requires the second-order differential calculation of the adjustable parameters of the controlled object. This paper also proposes the second-order differential calculation of the identified controller parameters using the convolutional integration for the control input synthesis. Finally, this paper also demonstrates the feasibility of the proposed method by some experimental results.","PeriodicalId":411916,"journal":{"name":"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDS.2017.8289281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes an adaptive positioning control of a servo system using a position sensorless controlled interior permanent magnet synchronous motor (IPMSM), in which the proposed adaptive system is based on Dynamic Certainty Equivalence (DyCE) principle using the convolutional integration for differential calculation. Generally, the adaptive control system requires strictly positive real (SPR) property for a certain transfer function of the control object for stable parameter identification. This controlled system has three relative degree, however this paper applies DyCE principle to reduce the relative degree, and to realize the stable parameter identification. In this approach, the control input synthesis requires the second-order differential calculation of the adjustable parameters of the controlled object. This paper also proposes the second-order differential calculation of the identified controller parameters using the convolutional integration for the control input synthesis. Finally, this paper also demonstrates the feasibility of the proposed method by some experimental results.
基于DyCE原理的无位置传感器自适应定位伺服系统,自适应控制输入综合采用卷积积分进行微分计算
本文提出了一种基于动态确定性等效(DyCE)原理的无位置传感器控制内置永磁同步电机(IPMSM)伺服系统的自适应定位控制方法,该方法采用卷积积分进行微分计算。一般自适应控制系统要求控制对象的传递函数具有严格正实数(SPR)性质,才能进行稳定参数辨识。该被控系统有三个相对度,本文利用DyCE原理降低了相对度,实现了稳定的参数辨识。在这种方法中,控制输入综合需要对被控对象的可调参数进行二阶微分计算。本文还提出了利用卷积积分对辨识出的控制器参数进行二阶微分计算的方法,用于控制输入的综合。最后,通过实验结果验证了所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信