Discrete wavelet transform based seizure detection in newborns EEG signals

Pega Zarjam, M. Mesbah
{"title":"Discrete wavelet transform based seizure detection in newborns EEG signals","authors":"Pega Zarjam, M. Mesbah","doi":"10.1109/ISSPA.2003.1224913","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method for detecting newborns seizure events from electroencephalogram (EEG) data. The detection scheme is based on the discrete wavelet transform (DWT) of the EEG signals. The number of zero-crossings, the average distance between adjacent zero-crossings, the number of extrema, and the average distance between adjacent extrema of the wavelet coefficients (WCs) of certain scales are extracted to form a feature set. The extracted feature set is then fed to an artificial neural network (ANN) classifier to organize the EEG signals into seizure and non- seizure activities. In this study, the training and test sets were obtained from EEG data acquired from 1 and 5 other neonates, respectively, with ages ranging from 2 days to 2 weeks. The obtained results show that on the average 95% of the EEG seizures were detected by the proposed scheme.","PeriodicalId":264814,"journal":{"name":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2003.1224913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes a novel method for detecting newborns seizure events from electroencephalogram (EEG) data. The detection scheme is based on the discrete wavelet transform (DWT) of the EEG signals. The number of zero-crossings, the average distance between adjacent zero-crossings, the number of extrema, and the average distance between adjacent extrema of the wavelet coefficients (WCs) of certain scales are extracted to form a feature set. The extracted feature set is then fed to an artificial neural network (ANN) classifier to organize the EEG signals into seizure and non- seizure activities. In this study, the training and test sets were obtained from EEG data acquired from 1 and 5 other neonates, respectively, with ages ranging from 2 days to 2 weeks. The obtained results show that on the average 95% of the EEG seizures were detected by the proposed scheme.
基于离散小波变换的新生儿脑电图信号癫痫检测
本文提出了一种从脑电图数据中检测新生儿癫痫事件的新方法。该检测方案基于脑电信号的离散小波变换(DWT)。提取一定尺度的小波系数(WCs)的过零次数、相邻过零的平均距离、极值次数、相邻极值的平均距离,形成特征集。然后将提取的特征集输入到人工神经网络(ANN)分类器中,将EEG信号组织为癫痫发作和非癫痫发作活动。在本研究中,训练集和测试集分别来自另外1和5个新生儿的脑电图数据,年龄从2天到2周不等。实验结果表明,平均95%的脑电图发作被该方法检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信