A SEB Hardened Trench Gate DMOS with HfO2 Gate Dielectric and Decelerating Electric Field Layer in Parasitic NPN Base

Jian Fang, Yibo Lei, Zhou Fang, Lijuan Shi, Lingli Tang, Xihe Yang, Ling Yan, Bo Zhang
{"title":"A SEB Hardened Trench Gate DMOS with HfO2 Gate Dielectric and Decelerating Electric Field Layer in Parasitic NPN Base","authors":"Jian Fang, Yibo Lei, Zhou Fang, Lijuan Shi, Lingli Tang, Xihe Yang, Ling Yan, Bo Zhang","doi":"10.1109/ISPSD57135.2023.10147721","DOIUrl":null,"url":null,"abstract":"The paper proposes a single-event burnout (SEB) hardened trench-gate DMOS with HfO2 gate dielectric and a decelerating electric field layer in the parasitic NPN. The proposed device presents remarkable potential to tolerate SEB. High-$k$ gate dielectric (HfO2) is adopted to obtain a higher channel doping concentration while maintaining the normal $V_{\\text{TH}}$, thereby suppressing the secondary breakdown of parasitic NPN. The decelerating electric field layer will reduce the $\\beta$ of parasitic NPN. For the hardened trench gate DMOS with breakdown voltage of 572V under irradiation linear energy transfer value of 1pC/µm (96MeV/mg/cm2), numerical results (without considering the self-heating effect) show that the SEB threshold voltage is 554V, while the conventional device's is 132V. The SEB threshold voltage is increased by 32%. When the LET value is smaller than 0.6pC/µm, the SEB threshold voltage is over 570V. The SEB threshold voltage of proposed device almost equals its original breakdown voltage. It is meaningful for SEB hardening design of power devices.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a single-event burnout (SEB) hardened trench-gate DMOS with HfO2 gate dielectric and a decelerating electric field layer in the parasitic NPN. The proposed device presents remarkable potential to tolerate SEB. High-$k$ gate dielectric (HfO2) is adopted to obtain a higher channel doping concentration while maintaining the normal $V_{\text{TH}}$, thereby suppressing the secondary breakdown of parasitic NPN. The decelerating electric field layer will reduce the $\beta$ of parasitic NPN. For the hardened trench gate DMOS with breakdown voltage of 572V under irradiation linear energy transfer value of 1pC/µm (96MeV/mg/cm2), numerical results (without considering the self-heating effect) show that the SEB threshold voltage is 554V, while the conventional device's is 132V. The SEB threshold voltage is increased by 32%. When the LET value is smaller than 0.6pC/µm, the SEB threshold voltage is over 570V. The SEB threshold voltage of proposed device almost equals its original breakdown voltage. It is meaningful for SEB hardening design of power devices.
一种具有HfO2栅极介质和减速电场层的寄生NPN基SEB硬化沟栅DMOS
本文提出了一种具有HfO2栅极介质和寄生NPN减速电场层的单事件烧坏(SEB)强化沟栅DMOS。所提出的装置具有显著的耐受SEB的潜力。采用高k栅极介电介质(HfO2)在保持正常V_{\text{TH}}$的同时获得较高的通道掺杂浓度,从而抑制寄生NPN的二次击穿。减速电场层将降低寄生NPN的$\beta$。对于击穿电压为572V的硬化沟槽栅DMOS,在辐照线性能量传递值为1pC/µm (96MeV/mg/cm2)的情况下,不考虑自热效应的SEB阈值电压为554V,而传统器件的阈值电压为132V。SEB阈值电压提高32%。当LET值小于0.6pC/µm时,SEB阈值电压大于570V。所提出器件的SEB阈值电压几乎等于其原始击穿电压。这对电力设备的SEB硬化设计具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信