{"title":"A SEB Hardened Trench Gate DMOS with HfO2 Gate Dielectric and Decelerating Electric Field Layer in Parasitic NPN Base","authors":"Jian Fang, Yibo Lei, Zhou Fang, Lijuan Shi, Lingli Tang, Xihe Yang, Ling Yan, Bo Zhang","doi":"10.1109/ISPSD57135.2023.10147721","DOIUrl":null,"url":null,"abstract":"The paper proposes a single-event burnout (SEB) hardened trench-gate DMOS with HfO2 gate dielectric and a decelerating electric field layer in the parasitic NPN. The proposed device presents remarkable potential to tolerate SEB. High-$k$ gate dielectric (HfO2) is adopted to obtain a higher channel doping concentration while maintaining the normal $V_{\\text{TH}}$, thereby suppressing the secondary breakdown of parasitic NPN. The decelerating electric field layer will reduce the $\\beta$ of parasitic NPN. For the hardened trench gate DMOS with breakdown voltage of 572V under irradiation linear energy transfer value of 1pC/µm (96MeV/mg/cm2), numerical results (without considering the self-heating effect) show that the SEB threshold voltage is 554V, while the conventional device's is 132V. The SEB threshold voltage is increased by 32%. When the LET value is smaller than 0.6pC/µm, the SEB threshold voltage is over 570V. The SEB threshold voltage of proposed device almost equals its original breakdown voltage. It is meaningful for SEB hardening design of power devices.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper proposes a single-event burnout (SEB) hardened trench-gate DMOS with HfO2 gate dielectric and a decelerating electric field layer in the parasitic NPN. The proposed device presents remarkable potential to tolerate SEB. High-$k$ gate dielectric (HfO2) is adopted to obtain a higher channel doping concentration while maintaining the normal $V_{\text{TH}}$, thereby suppressing the secondary breakdown of parasitic NPN. The decelerating electric field layer will reduce the $\beta$ of parasitic NPN. For the hardened trench gate DMOS with breakdown voltage of 572V under irradiation linear energy transfer value of 1pC/µm (96MeV/mg/cm2), numerical results (without considering the self-heating effect) show that the SEB threshold voltage is 554V, while the conventional device's is 132V. The SEB threshold voltage is increased by 32%. When the LET value is smaller than 0.6pC/µm, the SEB threshold voltage is over 570V. The SEB threshold voltage of proposed device almost equals its original breakdown voltage. It is meaningful for SEB hardening design of power devices.