Analysis of Kidney Ultrasound Images Characterization Using Statistical Moment Descriptor

W. Ardiatna, A. H. Saputro, D. Soejoko
{"title":"Analysis of Kidney Ultrasound Images Characterization Using Statistical Moment Descriptor","authors":"W. Ardiatna, A. H. Saputro, D. Soejoko","doi":"10.1109/IC3INA.2018.8629517","DOIUrl":null,"url":null,"abstract":"Commonly the abnormalities of renal diseases were diagnosed and described using morphological or radiological nomenclature. In distinguishing abnormalities, especially kidney diseases, it is important to characterize the ultrasound images more objectively. This study used The Statistical Moment Descriptor (SMD) with the pixel-level spatial distribution of B-mode ultrasound to analyze three types of the area such as the full kidney, the renal pelvis, and the cortex of fifty kidney ultrasound images. The significant SMD properties that can distinguish the normal from the abnormal ones with 95% confident level are the Mean (p=1.11e-04), the Median (p=0.0051), the Kurtosis (p=0.0053), the Standard Deviation (p=0.0082), and the Entropy (p=0.019) unlike Range (p= 0.091) and Skewness (p=0.1389). Renal pelvis and cortex areas plotting method is unable to distinguish the abnormalities for the CKD on some properties.","PeriodicalId":179466,"journal":{"name":"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3INA.2018.8629517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Commonly the abnormalities of renal diseases were diagnosed and described using morphological or radiological nomenclature. In distinguishing abnormalities, especially kidney diseases, it is important to characterize the ultrasound images more objectively. This study used The Statistical Moment Descriptor (SMD) with the pixel-level spatial distribution of B-mode ultrasound to analyze three types of the area such as the full kidney, the renal pelvis, and the cortex of fifty kidney ultrasound images. The significant SMD properties that can distinguish the normal from the abnormal ones with 95% confident level are the Mean (p=1.11e-04), the Median (p=0.0051), the Kurtosis (p=0.0053), the Standard Deviation (p=0.0082), and the Entropy (p=0.019) unlike Range (p= 0.091) and Skewness (p=0.1389). Renal pelvis and cortex areas plotting method is unable to distinguish the abnormalities for the CKD on some properties.
基于统计矩描述子的肾脏超声图像特征分析
肾脏疾病的异常通常是用形态学或放射学术语来诊断和描述的。在鉴别异常,特别是肾脏疾病时,更客观地描述超声图像是很重要的。本研究利用b超像素级空间分布的统计矩描述子(The Statistical Moment Descriptor, SMD)对50张肾脏超声图像的全肾、肾盂、肾皮质三种类型区域进行分析。能够以95%的置信水平区分正常和异常的显著SMD属性是Mean (p=1.11e-04)、Median (p=0.0051)、峰度(p=0.0053)、标准差(p=0.0082)和熵(p=0.019),不像Range (p= 0.091)和Skewness (p=0.1389)。肾盂及肾皮质区标绘法在某些特征上无法区分CKD的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信