Isometric Convolutional Neural Networks for Bone Suppression of Multi-Planar Dual Energy Chest Radiograph

Yossathorn Tianrungroj, H. Iba
{"title":"Isometric Convolutional Neural Networks for Bone Suppression of Multi-Planar Dual Energy Chest Radiograph","authors":"Yossathorn Tianrungroj, H. Iba","doi":"10.1109/IIAIAAI55812.2022.00087","DOIUrl":null,"url":null,"abstract":"Multi-planar bone suppression is an extended version of conventional anterior view bone suppression problem. It is expected to provide more information about the chest radiograph for medical diagnosis and for 3D reconstruction. In this study, convolutional neural networks with isometric architecture are explored to solve multi-planar bone suppression problem from dual energy chest radiographs and compared with conventional architecture, pyramidal architecture. As a result, the proposed isometric architecture has generally better performance and could produce medically diagnosable multi-planar bone-suppressed chest radiographs.","PeriodicalId":156230,"journal":{"name":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAIAAI55812.2022.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-planar bone suppression is an extended version of conventional anterior view bone suppression problem. It is expected to provide more information about the chest radiograph for medical diagnosis and for 3D reconstruction. In this study, convolutional neural networks with isometric architecture are explored to solve multi-planar bone suppression problem from dual energy chest radiographs and compared with conventional architecture, pyramidal architecture. As a result, the proposed isometric architecture has generally better performance and could produce medically diagnosable multi-planar bone-suppressed chest radiographs.
等距卷积神经网络用于多平面双能胸片骨抑制
多平面骨抑制是传统前视图骨抑制问题的扩展版本。它有望为医学诊断和三维重建提供更多关于胸片的信息。本研究探索等距结构卷积神经网络解决双能胸片多平面骨抑制问题,并与传统结构金字塔结构进行比较。因此,所提出的等距结构通常具有更好的性能,并且可以产生医学诊断的多平面骨抑制胸片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信