A novel clustering technique for short texts

Neetu Singh, Narendra S. Chaudhari
{"title":"A novel clustering technique for short texts","authors":"Neetu Singh, Narendra S. Chaudhari","doi":"10.1109/ICRITO.2016.7784956","DOIUrl":null,"url":null,"abstract":"We describe a novel clustering technique for clustering short texts, such as URLs, without enriching it with the help of external knowledge sources. Our technique first performs feature clustering to identify the key features of the dataset and then reconstructs the dataset on the basis of the key features. Then, it computes the similarity of the short texts belonging to the reconstructed dataset using similarity measures such as Jaccard, Cosine and Dice measures. Finally, it performs short text clustering using Spectral Clustering. We compare our method with conventional Spectral Clustering method which runs directly on the original short text dataset. We performed experiments on a subset of ODP dataset as well as WebKB dataset. The empirical results demonstrate an improvement of 21% in terms of accuracy over the Spectral Clustering method for ODP dataset and 29.2% for the WebKB dataset.","PeriodicalId":377611,"journal":{"name":"2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRITO.2016.7784956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We describe a novel clustering technique for clustering short texts, such as URLs, without enriching it with the help of external knowledge sources. Our technique first performs feature clustering to identify the key features of the dataset and then reconstructs the dataset on the basis of the key features. Then, it computes the similarity of the short texts belonging to the reconstructed dataset using similarity measures such as Jaccard, Cosine and Dice measures. Finally, it performs short text clustering using Spectral Clustering. We compare our method with conventional Spectral Clustering method which runs directly on the original short text dataset. We performed experiments on a subset of ODP dataset as well as WebKB dataset. The empirical results demonstrate an improvement of 21% in terms of accuracy over the Spectral Clustering method for ODP dataset and 29.2% for the WebKB dataset.
一种新的短文本聚类技术
我们描述了一种新的聚类技术,用于聚类短文本,如url,而不需要外部知识来源的帮助。我们的技术首先进行特征聚类来识别数据集的关键特征,然后在关键特征的基础上重建数据集。然后,使用Jaccard、Cosine和Dice等相似度度量来计算属于重构数据集的短文本的相似度。最后,利用谱聚类对短文本进行聚类。我们将该方法与直接在原始短文本数据集上运行的传统谱聚类方法进行了比较。我们在ODP数据集和WebKB数据集的一个子集上进行了实验。实验结果表明,与光谱聚类方法相比,ODP数据集的准确率提高了21%,WebKB数据集的准确率提高了29.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信