Classification of Pathological Signs for Diabetic Retinopathy Diagnosis using Image Enhancement Technique and Convolution Neural Network

Abdul Hafiz Abu Samah, F. Ahmad, M. K. Osman, M. Idris, N. M. Tahir, Nor Azimah Abd. Aziz
{"title":"Classification of Pathological Signs for Diabetic Retinopathy Diagnosis using Image Enhancement Technique and Convolution Neural Network","authors":"Abdul Hafiz Abu Samah, F. Ahmad, M. K. Osman, M. Idris, N. M. Tahir, Nor Azimah Abd. Aziz","doi":"10.1109/ICCSCE47578.2019.9068538","DOIUrl":null,"url":null,"abstract":"Diagnosis of diabetic retinopathy (DR) involves visual examination of retinal images by ophthalmologist to detect pathological signs such as exudate, haemorrhage (HEM) and microaneurysm (MA). This process is conducted manually, therefore it is time-consuming and subjected to human error. This paper develops an automatic and intelligent machine learning algorithm for the detection of diabetic retinopathy (DR) in fundus image. It involves image enhancement and classification of pathological signs using convolution neural network (CNN) for the DR pathological signs classification. In the image enhancement process, high-pass filter and histogram equalization are applied to improve visual quality of fundus images. A five layers CNN architecture is implemented to classify the three pathological signs; exudate, HEM and MA. Two dataset, DIARETDB1 and e-Ophtha are used to evaluate the performance of the system. Simulation results using enhanced DR images show significant improvement in classification accuracy compared to those images without enhancement for both datasets.","PeriodicalId":221890,"journal":{"name":"2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE47578.2019.9068538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Diagnosis of diabetic retinopathy (DR) involves visual examination of retinal images by ophthalmologist to detect pathological signs such as exudate, haemorrhage (HEM) and microaneurysm (MA). This process is conducted manually, therefore it is time-consuming and subjected to human error. This paper develops an automatic and intelligent machine learning algorithm for the detection of diabetic retinopathy (DR) in fundus image. It involves image enhancement and classification of pathological signs using convolution neural network (CNN) for the DR pathological signs classification. In the image enhancement process, high-pass filter and histogram equalization are applied to improve visual quality of fundus images. A five layers CNN architecture is implemented to classify the three pathological signs; exudate, HEM and MA. Two dataset, DIARETDB1 and e-Ophtha are used to evaluate the performance of the system. Simulation results using enhanced DR images show significant improvement in classification accuracy compared to those images without enhancement for both datasets.
基于图像增强技术和卷积神经网络的糖尿病视网膜病变病理征象分类
糖尿病视网膜病变(DR)的诊断涉及眼科医生对视网膜图像的视觉检查,以检测诸如渗出,出血(HEM)和微动脉瘤(MA)等病理体征。此过程是手动执行的,因此非常耗时并且容易出现人为错误。本文提出了一种用于眼底图像中糖尿病视网膜病变(DR)检测的自动智能机器学习算法。它涉及到使用卷积神经网络(CNN)对DR病理征象进行图像增强和分类。在图像增强过程中,采用高通滤波和直方图均衡化来提高眼底图像的视觉质量。采用五层CNN架构对三种病理征象进行分类;渗出物、HEM和MA。使用DIARETDB1和e-Ophtha两个数据集来评估系统的性能。在两个数据集上,使用增强的DR图像的仿真结果显示,与未增强的图像相比,分类精度有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信