Minimum time trajectory planner for the discrete dynamic robot model with dynamic constraints

H. H. Tan, R. B. Potts
{"title":"Minimum time trajectory planner for the discrete dynamic robot model with dynamic constraints","authors":"H. H. Tan, R. B. Potts","doi":"10.1109/56.2081","DOIUrl":null,"url":null,"abstract":"A minimum time trajectory planner is proposed for a manipulator arm. A totally discrete approach is adopted, in contrast to other models which use continuous-time but resort to discretization in the computation. The Neuman and Tourassis discrete-dynamic robot model is used to model the robot dynamics. The proposed trajectory planner includes joint-torque constraints to fully utilize the joint actuators. Realistic constraints such as the joint-jerk and joint-velocity constraints are incorporated into the model. The nonlinear optimization problem associated with the planner is partially linearized, which enables the iterative method of approximate programming to be used in solving the problem. Numerical examples for a two-link revolute arm are presented to demonstrate the use of the proposed trajectory planner. It is numerically verified that the convergence of the iterative algorithm is quadratic, and the trajectory planner therefore is computationally efficient. The use of a near-minimum time-cost function is also shown to yield a solution close to that obtained with the true minimum time-cost function. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.2081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

A minimum time trajectory planner is proposed for a manipulator arm. A totally discrete approach is adopted, in contrast to other models which use continuous-time but resort to discretization in the computation. The Neuman and Tourassis discrete-dynamic robot model is used to model the robot dynamics. The proposed trajectory planner includes joint-torque constraints to fully utilize the joint actuators. Realistic constraints such as the joint-jerk and joint-velocity constraints are incorporated into the model. The nonlinear optimization problem associated with the planner is partially linearized, which enables the iterative method of approximate programming to be used in solving the problem. Numerical examples for a two-link revolute arm are presented to demonstrate the use of the proposed trajectory planner. It is numerically verified that the convergence of the iterative algorithm is quadratic, and the trajectory planner therefore is computationally efficient. The use of a near-minimum time-cost function is also shown to yield a solution close to that obtained with the true minimum time-cost function. >
具有动态约束的离散动态机器人模型的最短时间轨迹规划
提出了一种机械臂最小时间轨迹规划方法。与其他使用连续时间但在计算中采用离散化的模型不同,本文采用了完全离散的方法。采用Neuman和Tourassis离散动力学模型对机器人进行动力学建模。所提出的轨迹规划包括关节力矩约束,以充分利用关节作动器。在模型中引入了关节加速度约束和关节速度约束等现实约束。与规划器相关的非线性优化问题被部分线性化,使得近似规划的迭代法可以用于求解该问题。给出了一个双连杆旋转臂的数值算例,以说明所提出的轨迹规划器的应用。数值验证了迭代算法的收敛速度是二次的,轨迹规划器的计算效率很高。近似最小时间代价函数的使用也显示出近似于用真正的最小时间代价函数得到的解。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信