{"title":"VERVE: A framework for variation-aware energy efficient synthesis of NoC-based MPSoCs with voltage islands","authors":"N. Kapadia, S. Pasricha","doi":"10.1109/ISQED.2013.6523673","DOIUrl":null,"url":null,"abstract":"With feature sizes far below the wavelength of light, variations in fabrication processes are becoming more common and can lead to unpredictable behavior in modern multiprocessor system-on-chip (MPSoC) designs. The design costs associated with margining required to overcome this unpredictability can be prohibitively high. System-level design approaches that are aware of these variations can be crucial for designing energy-efficient systems. We note that by performing voltage island placement appropriately, the two major unintended consequences of variations on the circuit characteristics (altered delay and power dissipation) can be traded-off, in order to minimize overall system energy. To this end, we propose a novel design-time system-level synthesis framework that is cognizant of process variations while mapping cores operating at specific supply voltages to a die and allocating communication routes on a 2D-mesh network-on-chip (NoC) topology for optimal energy-efficiency. Our experiments with real-world and synthetic application benchmarks show that our framework achieves 3.4% savings in computation energy and 19% savings in communication energy compared to the best known prior work on NoC-based MPSoC synthesis that considers process variations.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
With feature sizes far below the wavelength of light, variations in fabrication processes are becoming more common and can lead to unpredictable behavior in modern multiprocessor system-on-chip (MPSoC) designs. The design costs associated with margining required to overcome this unpredictability can be prohibitively high. System-level design approaches that are aware of these variations can be crucial for designing energy-efficient systems. We note that by performing voltage island placement appropriately, the two major unintended consequences of variations on the circuit characteristics (altered delay and power dissipation) can be traded-off, in order to minimize overall system energy. To this end, we propose a novel design-time system-level synthesis framework that is cognizant of process variations while mapping cores operating at specific supply voltages to a die and allocating communication routes on a 2D-mesh network-on-chip (NoC) topology for optimal energy-efficiency. Our experiments with real-world and synthetic application benchmarks show that our framework achieves 3.4% savings in computation energy and 19% savings in communication energy compared to the best known prior work on NoC-based MPSoC synthesis that considers process variations.