Synthesis of Multithreshold Threshold Gates

Maciej Nikodem, Marek A. Bawiec, J. Biernat
{"title":"Synthesis of Multithreshold Threshold Gates","authors":"Maciej Nikodem, Marek A. Bawiec, J. Biernat","doi":"10.1109/ISVLSI.2012.58","DOIUrl":null,"url":null,"abstract":"This paper presents novel synthesis algorithm capable of generating Multithreshold Threshold Gate (MTTG) structure for arbitrary Boolean function. Algorithm draws from dedicated efficient threshold decomposition procedure that represents Boolean function as a min/max composition of threshold functions. Since the proposed threshold decomposition procedure outputs minimal number of thresholds therefore the resulting gate is compact - for k-threshold n-input Boolean function at most (k+1)(n+1) NDR elements in a (k+1)-level gate structure, and (k+1)n transistors are required.","PeriodicalId":398850,"journal":{"name":"2012 IEEE Computer Society Annual Symposium on VLSI","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2012.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents novel synthesis algorithm capable of generating Multithreshold Threshold Gate (MTTG) structure for arbitrary Boolean function. Algorithm draws from dedicated efficient threshold decomposition procedure that represents Boolean function as a min/max composition of threshold functions. Since the proposed threshold decomposition procedure outputs minimal number of thresholds therefore the resulting gate is compact - for k-threshold n-input Boolean function at most (k+1)(n+1) NDR elements in a (k+1)-level gate structure, and (k+1)n transistors are required.
多阈值门限门的合成
本文提出了一种新的合成算法,能够生成任意布尔函数的多阈值门结构。算法借鉴了专门的高效阈值分解程序,将布尔函数表示为阈值函数的最小/最大组合。由于所提出的阈值分解过程输出的阈值数量最少,因此所得到的门是紧凑的-对于k-阈值n-输入布尔函数,在(k+1)级门结构中最多(k+1)(n+1)个NDR元件,并且需要(k+1)n个晶体管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信