A visualization environment for electron microscopy

Ioana M. Boier-Martin, D. Marinescu
{"title":"A visualization environment for electron microscopy","authors":"Ioana M. Boier-Martin, D. Marinescu","doi":"10.1109/PCCGA.1997.626203","DOIUrl":null,"url":null,"abstract":"Describes an environment for visualization and processing of low-dose, low-contrast electron micrographs of biological specimens. We focus on image selection, the first step in the process of reconstruction of the 3D structure of a specimen from its projections. Noise from a variety of sources makes automatic detection of particle positions a difficult task. New image acquisition devices and modern electron microscopy methods require the processing and rendering of very large images (50-100 million pixels). We describe techniques for processing large images, algorithms for detecting particle positions on compressed images using the crosspoint method, and methods for position refinement. EMMA, an interactive visualization environment for experimenting with particle identification methods is presented.","PeriodicalId":128371,"journal":{"name":"Proceedings The Fifth Pacific Conference on Computer Graphics and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings The Fifth Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCGA.1997.626203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Describes an environment for visualization and processing of low-dose, low-contrast electron micrographs of biological specimens. We focus on image selection, the first step in the process of reconstruction of the 3D structure of a specimen from its projections. Noise from a variety of sources makes automatic detection of particle positions a difficult task. New image acquisition devices and modern electron microscopy methods require the processing and rendering of very large images (50-100 million pixels). We describe techniques for processing large images, algorithms for detecting particle positions on compressed images using the crosspoint method, and methods for position refinement. EMMA, an interactive visualization environment for experimenting with particle identification methods is presented.
电子显微镜的可视化环境
描述生物标本的低剂量、低对比度电子显微照片的可视化和处理环境。我们专注于图像选择,这是从其投影重建标本三维结构过程的第一步。来自各种来源的噪声使得粒子位置的自动检测成为一项困难的任务。新的图像采集设备和现代电子显微镜方法需要处理和渲染非常大的图像(5000 -1亿像素)。我们描述了处理大图像的技术,使用交叉点方法检测压缩图像上的粒子位置的算法,以及位置细化的方法。提出了一种用于实验粒子识别方法的交互式可视化环境EMMA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信