Diffusion adaptive filtering for modelling brain responses to motor tasks

K. Eftaxias, S. Sanei
{"title":"Diffusion adaptive filtering for modelling brain responses to motor tasks","authors":"K. Eftaxias, S. Sanei","doi":"10.1109/ICDSP.2013.6622799","DOIUrl":null,"url":null,"abstract":"Diffusion adaptation combined with an adaptive way of estimating brain connectivity is used here in order to model specific motor tasks. We use Kalman filtering to fit an adaptive multivariate autoregressive model to our data and compute the connectivity measure which is a time-varying version of directed transfer function (DTF). The resulting method is used to classify the data from movement-related activities. The comparison between the proposed method and the non-diffusion method shows superiority of the former one.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Diffusion adaptation combined with an adaptive way of estimating brain connectivity is used here in order to model specific motor tasks. We use Kalman filtering to fit an adaptive multivariate autoregressive model to our data and compute the connectivity measure which is a time-varying version of directed transfer function (DTF). The resulting method is used to classify the data from movement-related activities. The comparison between the proposed method and the non-diffusion method shows superiority of the former one.
模拟大脑对运动任务反应的扩散自适应滤波
扩散适应结合自适应的方法来估计大脑的连通性,在这里是为了模拟特定的运动任务。我们使用卡尔曼滤波对我们的数据拟合一个自适应多元自回归模型,并计算连接度量,这是一个时变版本的有向传递函数(DTF)。所得到的方法用于对来自运动相关活动的数据进行分类。通过与非扩散方法的比较,证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信