Local control of bias and tension in beta-splines

B. Barsky, J. C. Beatty
{"title":"Local control of bias and tension in beta-splines","authors":"B. Barsky, J. C. Beatty","doi":"10.1145/800059.801151","DOIUrl":null,"url":null,"abstract":"The Beta-spline introduced recently by Barsky is a generalization of the uniform cubic B-spline: parametric discontinuities are introduced in such a way as to preserve continuity of the unit tangent and curvature vectors at joints (geometric continuity) while providing bias and tension parameters, independent of the position of control vertices, by which the shape of a curve or surface can be manipulated. Using a restricted form of quintic Hermite interpolation, it is possible to allow distinct bias and tension parameters at each joint without destroying geometric continuity. This provides a new means of obtaining local control of bias and tension in piecewise polynomial curves and surfaces.","PeriodicalId":381383,"journal":{"name":"Proceedings of the 10th annual conference on Computer graphics and interactive techniques","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1983-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800059.801151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Beta-spline introduced recently by Barsky is a generalization of the uniform cubic B-spline: parametric discontinuities are introduced in such a way as to preserve continuity of the unit tangent and curvature vectors at joints (geometric continuity) while providing bias and tension parameters, independent of the position of control vertices, by which the shape of a curve or surface can be manipulated. Using a restricted form of quintic Hermite interpolation, it is possible to allow distinct bias and tension parameters at each joint without destroying geometric continuity. This provides a new means of obtaining local control of bias and tension in piecewise polynomial curves and surfaces.
样条偏差和张力的局部控制
最近由Barsky引入的beta样条是均匀三次b样条的推广:参数不连续以这样一种方式引入,以保持关节处单位切线和曲率向量的连续性(几何连续性),同时提供与控制顶点位置无关的偏置和张力参数,通过这些参数可以操纵曲线或曲面的形状。使用限制形式的五次埃尔米特插值,可以允许不同的偏差和张力参数在每个关节不破坏几何连续性。这为分段多项式曲线和曲面的偏置和张力的局部控制提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信