E. Janssen, R. Mahmoudi, E. van der Heijden, P. Sakian, A. de Graauw, R. Pijper, A. V. van Roermund
{"title":"Fully balanced 60 GHz LNA with 37 % bandwidth, 3.8 dB NF, 10 dB gain and constant group delay over 6 GHz bandwidth","authors":"E. Janssen, R. Mahmoudi, E. van der Heijden, P. Sakian, A. de Graauw, R. Pijper, A. V. van Roermund","doi":"10.1109/SMIC.2010.5422843","DOIUrl":null,"url":null,"abstract":"This paper presents a two-stage fully integrated 60 GHz differential Low Noise Amplifier implemented in a TSMC bulk CMOS 65 nm technology. Implementation of a voltage-voltage feedback enables the neutralization of the Miller capacitance and the achievement of flat gain with a deviation of ± 0.25 dB over the entire 6 GHz bandwidth. It features a transducer gain (Gt) of 10 dB along with a noise figure (NF) of 3.8 dB, NFmin of 3.7 dB and a constant delay time. IIP3 is 4 dBm. It consumes 35 mW from a 1.2 V supply and only occupies 330 × 170 µm.","PeriodicalId":404957,"journal":{"name":"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMIC.2010.5422843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
This paper presents a two-stage fully integrated 60 GHz differential Low Noise Amplifier implemented in a TSMC bulk CMOS 65 nm technology. Implementation of a voltage-voltage feedback enables the neutralization of the Miller capacitance and the achievement of flat gain with a deviation of ± 0.25 dB over the entire 6 GHz bandwidth. It features a transducer gain (Gt) of 10 dB along with a noise figure (NF) of 3.8 dB, NFmin of 3.7 dB and a constant delay time. IIP3 is 4 dBm. It consumes 35 mW from a 1.2 V supply and only occupies 330 × 170 µm.