{"title":"Single-Cell Transcriptomics Reveals Tissue Architecture in Ovarian Carcinosarcoma","authors":"Junfen Xu, Y. Cen, Weiguo Lu","doi":"10.21203/rs.3.rs-986007/v1","DOIUrl":null,"url":null,"abstract":"\n Background\n\nOvarian carcinosarcoma (OCS) is one of rarest and most challenging histologic subtype of ovarian cancer. It features remarkable cellular heterogeneity. Using single-cell RNA sequencing, we characterize the cellular composition of the OCS and identify their molecular characteristics.\nMethods\n\nwe applied single-cell RNA sequencing (scRNA-seq) to resected primary OCS for the in-depth analysis of tumor cells and the TME. Immunohistochemistry (IHC) staining was used for validation.\nResults\n\nMalignant epithelial and fibroblast cells displayed a high-degree of intratumoral heterogeneity. We revealed that certain epithelial cell subclusters had high levels of drug resistance scores and many active metabolic pathways. Furthermore, γδ T cells exhibited enriched IFNγ and IFNα response characteristics. Notably, we observed that macrophages were mainly M2-like macrophages with immunosuppressive properties. In addition, we found that the CD1A+/FCER1A+ DC cells were enriched with genes related to cytolytic effector pathway. Analyzing ligand-receptor interaction pairs between cell types, we identified broadly interacting cells and observed an interaction between the ANXA1+ epithelial population and FPR1+/FPR3+ myeloid cells.\nConclusion\n\nOur findings provide a comprehensive single-cell transcriptomic landscape of human OCS and present a well-established resource for elucidating OCS diversity.","PeriodicalId":192166,"journal":{"name":"Proceedings of the ASGO 2022 7th International Workshop","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASGO 2022 7th International Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-986007/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Ovarian carcinosarcoma (OCS) is one of rarest and most challenging histologic subtype of ovarian cancer. It features remarkable cellular heterogeneity. Using single-cell RNA sequencing, we characterize the cellular composition of the OCS and identify their molecular characteristics.
Methods
we applied single-cell RNA sequencing (scRNA-seq) to resected primary OCS for the in-depth analysis of tumor cells and the TME. Immunohistochemistry (IHC) staining was used for validation.
Results
Malignant epithelial and fibroblast cells displayed a high-degree of intratumoral heterogeneity. We revealed that certain epithelial cell subclusters had high levels of drug resistance scores and many active metabolic pathways. Furthermore, γδ T cells exhibited enriched IFNγ and IFNα response characteristics. Notably, we observed that macrophages were mainly M2-like macrophages with immunosuppressive properties. In addition, we found that the CD1A+/FCER1A+ DC cells were enriched with genes related to cytolytic effector pathway. Analyzing ligand-receptor interaction pairs between cell types, we identified broadly interacting cells and observed an interaction between the ANXA1+ epithelial population and FPR1+/FPR3+ myeloid cells.
Conclusion
Our findings provide a comprehensive single-cell transcriptomic landscape of human OCS and present a well-established resource for elucidating OCS diversity.