Neural identification based on sliding mode observer

Xiaoou Li, Wen Yu
{"title":"Neural identification based on sliding mode observer","authors":"Xiaoou Li, Wen Yu","doi":"10.1109/CCA.2007.4389196","DOIUrl":null,"url":null,"abstract":"In this paper, a new on-line neural identification method is presented. The identified nonlinear systems are partial-state measurement. Their inner states, parameters and structures are unknown. The design is based on the combination of a sliding mode observer and a neuro identifier. First, a sliding mode observer, which does not need any information of the nonlinear system, is applied to get the full states. Then a dynamic multilayer neural network is used to identify the whole nonlinear system. The main contributions of this paper are: (1) a new observer based identification algorithm is proposed; (2) a stable learning algorithm for the neuro identifier is given.","PeriodicalId":176828,"journal":{"name":"2007 IEEE International Conference on Control Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Control Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2007.4389196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a new on-line neural identification method is presented. The identified nonlinear systems are partial-state measurement. Their inner states, parameters and structures are unknown. The design is based on the combination of a sliding mode observer and a neuro identifier. First, a sliding mode observer, which does not need any information of the nonlinear system, is applied to get the full states. Then a dynamic multilayer neural network is used to identify the whole nonlinear system. The main contributions of this paper are: (1) a new observer based identification algorithm is proposed; (2) a stable learning algorithm for the neuro identifier is given.
基于滑模观测器的神经辨识
本文提出了一种新的在线神经辨识方法。所识别的非线性系统是部分状态测量。它们的内部状态、参数和结构是未知的。该设计是基于滑模观测器和神经辨识器的结合。首先,采用不需要任何非线性系统信息的滑模观测器获取系统的全部状态;然后利用动态多层神经网络对整个非线性系统进行辨识。本文的主要贡献有:(1)提出了一种新的基于观测器的辨识算法;(2)给出了神经辨识器的稳定学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信