A push recovery strategy for a passively compliant humanoid robot using decentralized LQR controllers

Emmanouil Spyrakos-Papastavridis, G. Medrano-Cerda, N. Tsagarakis, J. Dai, D. Caldwell
{"title":"A push recovery strategy for a passively compliant humanoid robot using decentralized LQR controllers","authors":"Emmanouil Spyrakos-Papastavridis, G. Medrano-Cerda, N. Tsagarakis, J. Dai, D. Caldwell","doi":"10.1109/ICMECH.2013.6518581","DOIUrl":null,"url":null,"abstract":"This paper presents a control scheme that is directed towards the performance of push recovery on the compliant humanoid robot, COMAN. The novelty offered by this work is related to the use of a decentralized controller based on an initial Limited Quadratic Regulator (LQR) design on a humanoid robot in addition to the regulation of the actual joint positions instead of the motor positions. Moreover, the ankle-knee strategy is examined through the use of a compliant double inverted pendulum model. A key feature of the propounded approach lies in the controller's ability to regulate the system's inherently compliant dynamics through considering not only the motor-related variables but also those of the link-side, appearing after the passive compliant element. Consequently, this leads to a control method that is capable of stabilizing the robot by means of increasing the damping on the link, which is essential given the system's oscillatory behaviour once it has been perturbed.","PeriodicalId":448152,"journal":{"name":"2013 IEEE International Conference on Mechatronics (ICM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2013.6518581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a control scheme that is directed towards the performance of push recovery on the compliant humanoid robot, COMAN. The novelty offered by this work is related to the use of a decentralized controller based on an initial Limited Quadratic Regulator (LQR) design on a humanoid robot in addition to the regulation of the actual joint positions instead of the motor positions. Moreover, the ankle-knee strategy is examined through the use of a compliant double inverted pendulum model. A key feature of the propounded approach lies in the controller's ability to regulate the system's inherently compliant dynamics through considering not only the motor-related variables but also those of the link-side, appearing after the passive compliant element. Consequently, this leads to a control method that is capable of stabilizing the robot by means of increasing the damping on the link, which is essential given the system's oscillatory behaviour once it has been perturbed.
基于分散LQR控制器的被动服从人形机器人推恢复策略
本文提出了一种针对柔性仿人机器人COMAN的推力回收性能的控制方案。这项工作提供的新颖之处在于在人形机器人上使用基于初始有限二次型调节器(LQR)设计的分散控制器,除了调节实际关节位置而不是电机位置外。此外,通过使用柔性双倒立摆模型对踝关节-膝关节策略进行了检查。所提出的方法的一个关键特征在于控制器能够通过不仅考虑与运动相关的变量,而且考虑出现在被动柔性元件之后的链路侧变量来调节系统的固有柔性动力学。因此,这导致了一种能够通过增加连杆上的阻尼来稳定机器人的控制方法,这对于一旦受到干扰的系统的振荡行为是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信