Current sensing techniques for global interconnects in very deep submicron (VDSM) CMOS

A. Maheshwari, Wayne Burleson
{"title":"Current sensing techniques for global interconnects in very deep submicron (VDSM) CMOS","authors":"A. Maheshwari, Wayne Burleson","doi":"10.1109/IWV.2001.923141","DOIUrl":null,"url":null,"abstract":"Sensing current instead of voltage provides an alternative to signaling on the long wires that are increasingly limiting the performance of CMOS as it scales into the VDSM regime (<0.25 /spl mu/). Current-mode techniques have been proposed for sensing bit-lines. We present a comparative study of Current-sensing with the optimal repeater insertion technique for wires from 0.35 cm to 1.75 cm in length. Simulation results using SPICE for 0.18 /spl mu/ showed that current-sensing was faster and lower-power when compared to optimal repeater insertion technique. While the power dissipated by the optimal repeater circuit increased linearly with line length, power dissipated by the current-sensing circuit was almost constant for longer lines. Inductance had little effect on the differential current sensing technique.","PeriodicalId":114059,"journal":{"name":"Proceedings IEEE Computer Society Workshop on VLSI 2001. Emerging Technologies for VLSI Systems","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Computer Society Workshop on VLSI 2001. Emerging Technologies for VLSI Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWV.2001.923141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Sensing current instead of voltage provides an alternative to signaling on the long wires that are increasingly limiting the performance of CMOS as it scales into the VDSM regime (<0.25 /spl mu/). Current-mode techniques have been proposed for sensing bit-lines. We present a comparative study of Current-sensing with the optimal repeater insertion technique for wires from 0.35 cm to 1.75 cm in length. Simulation results using SPICE for 0.18 /spl mu/ showed that current-sensing was faster and lower-power when compared to optimal repeater insertion technique. While the power dissipated by the optimal repeater circuit increased linearly with line length, power dissipated by the current-sensing circuit was almost constant for longer lines. Inductance had little effect on the differential current sensing technique.
甚深亚微米(VDSM) CMOS中全局互连的传感技术
感应电流而不是电压为长导线上的信号提供了一种替代方案,随着CMOS扩展到VDSM范围(<0.25 /spl mu/),长导线越来越限制了CMOS的性能。电流模式技术已被提出用于检测位线。我们提出了一个比较研究的电流传感与最佳中继器插入技术导线从0.35厘米至1.75厘米的长度。基于SPICE的0.18 /spl mu/的仿真结果表明,与最优中继器插入技术相比,电流传感速度更快,功耗更低。最优中继器电路的功耗随线路长度线性增加,而电流感测电路的功耗在较长的线路上几乎是恒定的。电感对差动电流传感技术影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信