SIF-NPU: A 28nm 3.48 TOPS/W 0.25 TOPS/mm2 CNN Accelerator with Spatially Independent Fusion for Real-Time UHD Super-Resolution

Sumin Lee, K. Lee, Sunghwan Joo, Hong Keun Ahn, Junghyup Lee, Dohyung Kim, Bumsub Ham, Seong-ook Jung
{"title":"SIF-NPU: A 28nm 3.48 TOPS/W 0.25 TOPS/mm2 CNN Accelerator with Spatially Independent Fusion for Real-Time UHD Super-Resolution","authors":"Sumin Lee, K. Lee, Sunghwan Joo, Hong Keun Ahn, Junghyup Lee, Dohyung Kim, Bumsub Ham, Seong-ook Jung","doi":"10.1109/ESSCIRC55480.2022.9911509","DOIUrl":null,"url":null,"abstract":"This paper proposes a convolutional neural network (CNN)-based super-resolution accelerator for up-scaling to ultra-HD (UHD) resolution in real-time in edge devices. A novel error-compensated bit quantization is adopted to reduce bit depth in the SR task. Spatially independent layer fusion is exploited to satisfy high throughput requirements at UHD resolution by increasing parallelism. Burst operation with write mask in the dual-port SRAM increases the process element utilization by allowing the concurrent multi-access without exploiting additional memory. The accelerator is implemented in the 28nm technology and shows at least 4.3 times higher $\\text{FoM}(\\text{TOPS}/\\text{mm}^{2}\\times \\text{TOPS/W)}$ of 0.87 than the state-of-art CNN accelerators. The implemented accelerator supports up-scaling up to 96 frames-per-seconds in UHD resolution.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a convolutional neural network (CNN)-based super-resolution accelerator for up-scaling to ultra-HD (UHD) resolution in real-time in edge devices. A novel error-compensated bit quantization is adopted to reduce bit depth in the SR task. Spatially independent layer fusion is exploited to satisfy high throughput requirements at UHD resolution by increasing parallelism. Burst operation with write mask in the dual-port SRAM increases the process element utilization by allowing the concurrent multi-access without exploiting additional memory. The accelerator is implemented in the 28nm technology and shows at least 4.3 times higher $\text{FoM}(\text{TOPS}/\text{mm}^{2}\times \text{TOPS/W)}$ of 0.87 than the state-of-art CNN accelerators. The implemented accelerator supports up-scaling up to 96 frames-per-seconds in UHD resolution.
SIF-NPU:一个28纳米3.48 TOPS/W 0.25 TOPS/mm2 CNN加速器,具有空间独立融合,用于实时超高清超分辨率
本文提出了一种基于卷积神经网络(CNN)的超分辨率加速器,用于在边缘设备中实时升级到超高清(UHD)分辨率。在SR任务中,采用了一种新颖的误差补偿比特量化来减小比特深度。通过增加并行性,利用空间无关层融合来满足超高清分辨率下的高吞吐量要求。双端口SRAM中带写掩码的突发操作通过允许并发多访问而不占用额外内存来增加进程元素的利用率。该加速器采用28nm技术,显示出$\text{FoM}(\text{TOPS}/\text{mm}^{2}\times \text{TOPS/W)}$比最先进的CNN加速器高出至少4.3倍,为0.87。实现的加速器支持UHD分辨率高达每秒96帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信