Sphinx-Based Evaluation of Efficient Acoustic Modeling Parameters for LibriSpeech Corpus

S. Sharan, A. Dev, Poonam Bansal, Shweta A. Bansal, S. Agrawal
{"title":"Sphinx-Based Evaluation of Efficient Acoustic Modeling Parameters for LibriSpeech Corpus","authors":"S. Sharan, A. Dev, Poonam Bansal, Shweta A. Bansal, S. Agrawal","doi":"10.1109/AIST55798.2022.10064750","DOIUrl":null,"url":null,"abstract":"In this paper we are assessing the efficient parameters i.e., the number of senones and number of gaussian densities for a well-known audiobook corpus \"LibriSpeech\" based Automatic Speech Recognition System (ASR) using the open-source tool Sphinx. Sphinx is a Hidden Markov Model (HMM) based offline large vocabulary language and speaker independent continuous ASR system with a support for low-resource handheld devices. We have trained the acoustic model by varying the parameters and examined the quality of the models using Word Error Rate (WER). The best achieved WER of the model is observed as 9.5% with 2000 senones and 64 gaussian distributions.","PeriodicalId":360351,"journal":{"name":"2022 4th International Conference on Artificial Intelligence and Speech Technology (AIST)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Artificial Intelligence and Speech Technology (AIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIST55798.2022.10064750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we are assessing the efficient parameters i.e., the number of senones and number of gaussian densities for a well-known audiobook corpus "LibriSpeech" based Automatic Speech Recognition System (ASR) using the open-source tool Sphinx. Sphinx is a Hidden Markov Model (HMM) based offline large vocabulary language and speaker independent continuous ASR system with a support for low-resource handheld devices. We have trained the acoustic model by varying the parameters and examined the quality of the models using Word Error Rate (WER). The best achieved WER of the model is observed as 9.5% with 2000 senones and 64 gaussian distributions.
基于sphinx的librisspeech语料库高效声学建模参数评价
在本文中,我们使用开源工具Sphinx评估了一个著名的有声读物语料库“librisspeech”的自动语音识别系统(ASR)的有效参数,即senones的数量和高斯密度的数量。Sphinx是一个基于隐马尔可夫模型(HMM)的离线大词汇语言和独立于说话者的连续ASR系统,支持低资源手持设备。我们通过改变参数来训练声学模型,并使用单词错误率(WER)来检查模型的质量。在2000个senones和64个高斯分布下,该模型的最佳WER为9.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信