Multiple-valued decision diagrams with symmetric variable nodes

D. M. Miller, N. Muranaka
{"title":"Multiple-valued decision diagrams with symmetric variable nodes","authors":"D. M. Miller, N. Muranaka","doi":"10.1109/ISMVL.1996.508375","DOIUrl":null,"url":null,"abstract":"Symmetry is an important property of logic functions. In this paper, we introduce symmetric variable nodes, and investigate how they can be used to advantage in decision diagrams. We consider totally-symmetric and partially-symmetric functions as well as functions with partial symmetries. The identification of symmetric variable nodes is investigated as is the uniqueness of the resulting representation. A principal advantage of the new node type is that it often reduces the depth of the decision diagram. We consider the effect this has on the circuits that can be directly identified from decision diagrams.","PeriodicalId":403347,"journal":{"name":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1996.508375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Symmetry is an important property of logic functions. In this paper, we introduce symmetric variable nodes, and investigate how they can be used to advantage in decision diagrams. We consider totally-symmetric and partially-symmetric functions as well as functions with partial symmetries. The identification of symmetric variable nodes is investigated as is the uniqueness of the resulting representation. A principal advantage of the new node type is that it often reduces the depth of the decision diagram. We consider the effect this has on the circuits that can be directly identified from decision diagrams.
具有对称变量节点的多值决策图
对称性是逻辑函数的一个重要性质。在本文中,我们引入了对称变量节点,并研究了如何在决策图中利用它们。我们考虑了完全对称和部分对称函数以及部分对称函数。研究了对称变量节点的辨识,并研究了结果表示的唯一性。新节点类型的一个主要优点是它经常减少决策图的深度。我们考虑这对电路的影响,可以直接从决策图中识别出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信