Adaptive Average Exploration in Multi-Agent Reinforcement Learning

Garrett Hall, K. Holladay
{"title":"Adaptive Average Exploration in Multi-Agent Reinforcement Learning","authors":"Garrett Hall, K. Holladay","doi":"10.1109/DASC50938.2020.9256721","DOIUrl":null,"url":null,"abstract":"The objective of this research project was to improve Multi-Agent Reinforcement Learning performance in the StarCraft II environment with respect to faster training times, greater stability, and higher win ratios by 1) creating an adaptive action selector we call Adaptive Average Exploration, 2) using experiences previously learned by a neural network via Transfer Learning, and 3) updating the network simultaneously with its random action selector epsilon. We describe how agents interact with the StarCraft II environment and the QMIX algorithm used to test our approaches. We compare our AAE action selection approach with the default epsilon greedy method used by QMIX. These approaches are used to train Transfer Learning (TL) agents under a variety of test cases. We evaluate our TL agents using a predefined set of metrics. Finally, we demonstrate the effects of updating the neural networks and epsilon together more frequently on network performance.","PeriodicalId":112045,"journal":{"name":"2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC50938.2020.9256721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this research project was to improve Multi-Agent Reinforcement Learning performance in the StarCraft II environment with respect to faster training times, greater stability, and higher win ratios by 1) creating an adaptive action selector we call Adaptive Average Exploration, 2) using experiences previously learned by a neural network via Transfer Learning, and 3) updating the network simultaneously with its random action selector epsilon. We describe how agents interact with the StarCraft II environment and the QMIX algorithm used to test our approaches. We compare our AAE action selection approach with the default epsilon greedy method used by QMIX. These approaches are used to train Transfer Learning (TL) agents under a variety of test cases. We evaluate our TL agents using a predefined set of metrics. Finally, we demonstrate the effects of updating the neural networks and epsilon together more frequently on network performance.
多智能体强化学习中的自适应平均探索
这个研究项目的目标是提高《星际争霸II》环境中的多智能体强化学习性能,包括更快的训练时间、更大的稳定性和更高的胜率,方法是:1)创建一个自适应动作选择器,我们称之为自适应平均探索;2)使用神经网络通过迁移学习之前学到的经验;3)同时用随机动作选择器epsilon更新网络。我们描述了代理如何与星际争霸II环境和QMIX算法进行交互,这些算法用于测试我们的方法。我们将我们的AAE动作选择方法与QMIX使用的默认epsilon贪婪方法进行了比较。这些方法用于在各种测试用例下训练迁移学习(TL)代理。我们使用一组预定义的指标来评估TL代理。最后,我们展示了更频繁地同时更新神经网络和epsilon对网络性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信