Green IoT Protection: Sustainability-Driven Machine Intelligence for Malware Defense

A. H. Abdel-aziem, Tamer H. M. Soliman
{"title":"Green IoT Protection: Sustainability-Driven Machine Intelligence for Malware Defense","authors":"A. H. Abdel-aziem, Tamer H. M. Soliman","doi":"10.54216/jsdgt.020205","DOIUrl":null,"url":null,"abstract":"As the Internet of Things (IoT) continues to expand, the security of connected devices becomes a paramount concern. Malicious actors exploit vulnerabilities in these devices, leading to severe consequences such as data breaches, privacy infringements, and service disruptions. Traditional security measures struggle to keep pace with the evolving threat landscape, necessitating advanced solutions. In this paper, we present a pioneering approach to fortify the security of IoT environments against malware through the integration of advanced machine intelligence techniques. Our work addresses this critical concern by introducing a comprehensive Machine Intelligence Strategy designed to detect and classify malware in IoT ecosystem. Leveraging Support Vector Machines (SVM) with different kernel choices, our strategy offers a multi-faceted defense mechanism. Through extensive experimentation and evaluation on public dataset of malware images, we demonstrate the efficacy of our strategy in fortifying the guardianship of connected devices, fostering a safer and more resilient IoT ecosystem. Beyond technical contributions, our research fosters a deeper understanding of the symbiotic relationship between machine intelligence and IoT security, propelling advancements in safeguarding the ever-expanding landscape of interconnected devices.","PeriodicalId":117695,"journal":{"name":"Journal of Sustainable Development and Green Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Development and Green Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jsdgt.020205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the Internet of Things (IoT) continues to expand, the security of connected devices becomes a paramount concern. Malicious actors exploit vulnerabilities in these devices, leading to severe consequences such as data breaches, privacy infringements, and service disruptions. Traditional security measures struggle to keep pace with the evolving threat landscape, necessitating advanced solutions. In this paper, we present a pioneering approach to fortify the security of IoT environments against malware through the integration of advanced machine intelligence techniques. Our work addresses this critical concern by introducing a comprehensive Machine Intelligence Strategy designed to detect and classify malware in IoT ecosystem. Leveraging Support Vector Machines (SVM) with different kernel choices, our strategy offers a multi-faceted defense mechanism. Through extensive experimentation and evaluation on public dataset of malware images, we demonstrate the efficacy of our strategy in fortifying the guardianship of connected devices, fostering a safer and more resilient IoT ecosystem. Beyond technical contributions, our research fosters a deeper understanding of the symbiotic relationship between machine intelligence and IoT security, propelling advancements in safeguarding the ever-expanding landscape of interconnected devices.
绿色物联网防护:可持续性驱动的恶意软件防御机器智能
随着物联网(IoT)的不断扩展,连接设备的安全性成为人们最关心的问题。恶意行为者利用这些设备中的漏洞,导致数据泄露、隐私侵犯和服务中断等严重后果。传统的安全措施难以跟上不断变化的威胁形势,因此需要先进的解决方案。在本文中,我们提出了一种开创性的方法,通过集成先进的机器智能技术来加强物联网环境对恶意软件的安全性。我们的工作通过引入全面的机器智能策略来解决这一关键问题,该策略旨在检测和分类物联网生态系统中的恶意软件。利用不同内核选择的支持向量机(SVM),我们的策略提供了一个多方面的防御机制。通过对恶意软件图像的公共数据集进行广泛的实验和评估,我们证明了我们的战略在加强连接设备的监护,培养更安全,更有弹性的物联网生态系统方面的有效性。除了技术贡献,我们的研究促进了对机器智能和物联网安全之间共生关系的更深入理解,推动了保护不断扩大的互联设备领域的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信