PEA: Predicting Expert Agents approach

Afef Selmi, Zaki Brahmi, M. Gammoudi
{"title":"PEA: Predicting Expert Agents approach","authors":"Afef Selmi, Zaki Brahmi, M. Gammoudi","doi":"10.1109/WETICE49692.2020.00012","DOIUrl":null,"url":null,"abstract":"In multi-agent recommender system, the knowledge degree of an agent and its trust degree are two main criteria in the decision-making phase. These criteria are used to recommend the expert agent. Therefore, how to model agent and evaluate its trust is becoming a challenging issue. This problem can affect the whole prediction of expert agents. In this paper, we propose a Predicting Expert Agents approach (PEA). We applied a clustering method, Fuzzy Formal Concepts Analysis, to model agent and evaluate its trust and a probabilistic method, Theory of Belief Functions, to predict the expert agent.","PeriodicalId":114214,"journal":{"name":"2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE49692.2020.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In multi-agent recommender system, the knowledge degree of an agent and its trust degree are two main criteria in the decision-making phase. These criteria are used to recommend the expert agent. Therefore, how to model agent and evaluate its trust is becoming a challenging issue. This problem can affect the whole prediction of expert agents. In this paper, we propose a Predicting Expert Agents approach (PEA). We applied a clustering method, Fuzzy Formal Concepts Analysis, to model agent and evaluate its trust and a probabilistic method, Theory of Belief Functions, to predict the expert agent.
预测专家代理方法
在多智能体推荐系统中,智能体的知识程度和信任程度是决策阶段的两个主要标准。这些标准用于推荐专家代理。因此,如何对智能体进行建模并评估其信任成为一个具有挑战性的问题。这个问题会影响专家代理的整个预测。本文提出了一种预测专家代理方法(PEA)。我们采用聚类方法——模糊形式概念分析(Fuzzy Formal Concepts Analysis)对智能体建模并评估其信任程度,采用概率方法——信念函数理论(Theory of Belief Functions)对专家智能体进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信