{"title":"High dv/dt pulse generator based on series-connetion SiC MOSFETs","authors":"A. Torrisi, D. Brunelli","doi":"10.1109/speedam53979.2022.9842038","DOIUrl":null,"url":null,"abstract":"New technologies and materials for power electronic switching devices are gaining momentum. Indeed, wide-bandgap semiconductors, such as silicon carbide (SiC) or gallium nitride (GaN), manifest advanced and innovative properties regarding their switching performance. Thus, increasing the switching dv/dt rate and reducing switching power losses. However, faster switching transient enhances the insulating material stresses. Therefore, we developed a pulse generator based on a series connection of four SiC MOSFETs to produce super-fast transient pulses. After the electronic circuit design and implementation, we performed several tests showing the capability of the pulse generator and proving the correct operation under strict output load conditions. The best-achieved dv/dt rate with a 4.2 kV pulse amplitude is 155 kV/μs in no-load condition and 110 kV/μs on a 100 pF load capacitance.","PeriodicalId":365235,"journal":{"name":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/speedam53979.2022.9842038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
New technologies and materials for power electronic switching devices are gaining momentum. Indeed, wide-bandgap semiconductors, such as silicon carbide (SiC) or gallium nitride (GaN), manifest advanced and innovative properties regarding their switching performance. Thus, increasing the switching dv/dt rate and reducing switching power losses. However, faster switching transient enhances the insulating material stresses. Therefore, we developed a pulse generator based on a series connection of four SiC MOSFETs to produce super-fast transient pulses. After the electronic circuit design and implementation, we performed several tests showing the capability of the pulse generator and proving the correct operation under strict output load conditions. The best-achieved dv/dt rate with a 4.2 kV pulse amplitude is 155 kV/μs in no-load condition and 110 kV/μs on a 100 pF load capacitance.