{"title":"Improving Rice Grain Quality by Enhancing Accumulation of Iron and Zinc While Minimizing Cadmium and Lead","authors":"Lei Gao, J. Xiong","doi":"10.5772/INTECHOPEN.72826","DOIUrl":null,"url":null,"abstract":"Iron (Fe) and zinc (Zn) are important trace elements for people’s health around the globe. A lot of people, especially children and woman, are suffering from malnutrition caused by Fe and/or Zn deficiency. The deficiency is more pronounced in some parts of Africa and Asia due to low income, which makes it difficult to afford meat or sea foods that are rich in Fe and Zn. Biofortification of Fe and Zn in rice is the most economical and conve - nient way to supplement these important minerals in the diet of poor people. However, besides Fe and Zn, rice also can accumulate heavy metals, such as cadmium (Cd) and lead (Pb), which are harmful to people, especially for kids’ health. Previous researches have shown that there are connections and discrepancies for metal absorption, translo - cation, and accumulation in rice. So it is imperative to review these issues. This chapter compares the physiological and molecular mechanisms of Fe, Zn, Cd, and Pb uptake, mobilization, and accumulation in rice and discusses the progress and strategies for not only increasing Fe/Zn but also decreasing Cd/Zn accumulation in rice. Cd/Pb in grains based on functional QTLs or genes. These cultivars show no agriculturally or economically adverse traits and can be applied sooner. On the other hand, modern transgenic technology provides perspectives for efficiently improving Fe/Zn content and decreasing Cd/ Pb content in rice grains to dietary significant levels for humans’ nutrition (As to Pb, more researches on QTL and genes still needed). Besides improving rice seeds, water and fertilizer management is also significantly related with increased Fe/Zn and decreased Cd/Pb in rice grains. More studies are still needed to optimize irrigation time, fertilizer categories, dosage, and application stages. In addition, although it is available to establish rice cultivars with high Fe or Zn content, or establish rice cultivars with low Cd or Pb separately, interactions among these metals need to be better understood, and more steps are still needed to cultivate rice with all these merits and without decreasing rice production.","PeriodicalId":433846,"journal":{"name":"Rice Crop - Current Developments","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Crop - Current Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.72826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Iron (Fe) and zinc (Zn) are important trace elements for people’s health around the globe. A lot of people, especially children and woman, are suffering from malnutrition caused by Fe and/or Zn deficiency. The deficiency is more pronounced in some parts of Africa and Asia due to low income, which makes it difficult to afford meat or sea foods that are rich in Fe and Zn. Biofortification of Fe and Zn in rice is the most economical and conve - nient way to supplement these important minerals in the diet of poor people. However, besides Fe and Zn, rice also can accumulate heavy metals, such as cadmium (Cd) and lead (Pb), which are harmful to people, especially for kids’ health. Previous researches have shown that there are connections and discrepancies for metal absorption, translo - cation, and accumulation in rice. So it is imperative to review these issues. This chapter compares the physiological and molecular mechanisms of Fe, Zn, Cd, and Pb uptake, mobilization, and accumulation in rice and discusses the progress and strategies for not only increasing Fe/Zn but also decreasing Cd/Zn accumulation in rice. Cd/Pb in grains based on functional QTLs or genes. These cultivars show no agriculturally or economically adverse traits and can be applied sooner. On the other hand, modern transgenic technology provides perspectives for efficiently improving Fe/Zn content and decreasing Cd/ Pb content in rice grains to dietary significant levels for humans’ nutrition (As to Pb, more researches on QTL and genes still needed). Besides improving rice seeds, water and fertilizer management is also significantly related with increased Fe/Zn and decreased Cd/Pb in rice grains. More studies are still needed to optimize irrigation time, fertilizer categories, dosage, and application stages. In addition, although it is available to establish rice cultivars with high Fe or Zn content, or establish rice cultivars with low Cd or Pb separately, interactions among these metals need to be better understood, and more steps are still needed to cultivate rice with all these merits and without decreasing rice production.