Classify Arabic Text using Vector Space Models

Essam Said Hanandeh, Aref Abu Awwad, Yazan Khassawneh
{"title":"Classify Arabic Text using Vector Space Models","authors":"Essam Said Hanandeh, Aref Abu Awwad, Yazan Khassawneh","doi":"10.1109/acit53391.2021.9677134","DOIUrl":null,"url":null,"abstract":"The researchers of this study chose 242 Arabic abstract doucments. Computer science and information systems are mentioned in all of these abstracts. The researchers created an Arabic-specific autonomous information retrieval system, the system was written in the C# NET programming language and its compatible with IBM/PCs and other microcomputers. For this corpus, The researchers used an automatic indexing strategy. The system was created using the Vector Space Model (VSM). In this model, the researcher take all measurements and utilize the Cosine, Dice, Jaccard, and Inner Product Similarity measures. Using the Vector Space Model, the researchers compared the retrieval results. In Arabic documents, the researchers discovered that the retrieval result for cosine is better than the retrieval result for other measures.","PeriodicalId":302120,"journal":{"name":"2021 22nd International Arab Conference on Information Technology (ACIT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acit53391.2021.9677134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The researchers of this study chose 242 Arabic abstract doucments. Computer science and information systems are mentioned in all of these abstracts. The researchers created an Arabic-specific autonomous information retrieval system, the system was written in the C# NET programming language and its compatible with IBM/PCs and other microcomputers. For this corpus, The researchers used an automatic indexing strategy. The system was created using the Vector Space Model (VSM). In this model, the researcher take all measurements and utilize the Cosine, Dice, Jaccard, and Inner Product Similarity measures. Using the Vector Space Model, the researchers compared the retrieval results. In Arabic documents, the researchers discovered that the retrieval result for cosine is better than the retrieval result for other measures.
使用向量空间模型对阿拉伯文本进行分类
本研究选取了242份阿拉伯文摘要文献。所有这些摘要都提到了计算机科学和信息系统。研究人员创建了一个特定于阿拉伯语的自主信息检索系统,该系统使用c# . NET编程语言编写,并与IBM/ pc和其他微型计算机兼容。对于这个语料库,研究人员使用了自动索引策略。该系统使用向量空间模型(VSM)创建。在这个模型中,研究人员采取了所有的测量方法,并利用了余弦、骰子、Jaccard和内积相似性度量。利用向量空间模型,研究人员比较了检索结果。在阿拉伯语文档中,研究人员发现余弦的检索结果优于其他方法的检索结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信