Z-PIM: An Energy-Efficient Sparsity Aware Processing-In-Memory Architecture with Fully-Variable Weight Precision

Jihoon Kim, Juhyoung Lee, Jinsu Lee, H. Yoo, Joo-Young Kim
{"title":"Z-PIM: An Energy-Efficient Sparsity Aware Processing-In-Memory Architecture with Fully-Variable Weight Precision","authors":"Jihoon Kim, Juhyoung Lee, Jinsu Lee, H. Yoo, Joo-Young Kim","doi":"10.1109/VLSICircuits18222.2020.9163015","DOIUrl":null,"url":null,"abstract":"This paper presents Z-PIM, an energy-efficient processing-in-memory (PIM) architecture that supports zero-skipping operations and fully-variable weight bit-precision for efficient deep neural network (DNN). The 8T-SRAM cell based bit-serial operation with hierarchical bit-line structure enables variable weight precision and reduces bit-line switching by 95.42% in convolution layers of VGG-16. Z-PIM handles abundant zeros in weight data by skip-reading their corresponding input data while read-sequence rearranging and pipelining improves throughput by 66.1%. In addition, diagonal accumulation logic is proposed to accumulate both partial-sums for bit-serial operation and spatial products. As a result, the Z-PIM chip fabricated in a 65nm process consumes average 5.294mW power and achieves 0.31–49.12 TOPS/W energy efficiency for convolution operations as sparsity and weight bit-precision vary from 0.1 to 0.9 and 1b to 16b, respectively.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"61 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSICircuits18222.2020.9163015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents Z-PIM, an energy-efficient processing-in-memory (PIM) architecture that supports zero-skipping operations and fully-variable weight bit-precision for efficient deep neural network (DNN). The 8T-SRAM cell based bit-serial operation with hierarchical bit-line structure enables variable weight precision and reduces bit-line switching by 95.42% in convolution layers of VGG-16. Z-PIM handles abundant zeros in weight data by skip-reading their corresponding input data while read-sequence rearranging and pipelining improves throughput by 66.1%. In addition, diagonal accumulation logic is proposed to accumulate both partial-sums for bit-serial operation and spatial products. As a result, the Z-PIM chip fabricated in a 65nm process consumes average 5.294mW power and achieves 0.31–49.12 TOPS/W energy efficiency for convolution operations as sparsity and weight bit-precision vary from 0.1 to 0.9 and 1b to 16b, respectively.
Z-PIM:一种具有完全可变权值精度的节能稀疏感知内存处理体系结构
本文提出了一种高效的内存处理(PIM)体系结构Z-PIM,它支持高效深度神经网络(DNN)的跳零操作和完全可变权比特精度。在VGG-16的卷积层中,基于8T-SRAM单元的分层位线结构的位串行操作实现了可变权重精度,并将位线切换降低了95.42%。Z-PIM通过跳过读取相应的输入数据来处理权值数据中的大量零,而读取序列重排和流水线将吞吐量提高了66.1%。此外,还提出了对角累积逻辑来累积位序列运算和空间积的部分和。因此,采用65nm工艺制造的Z-PIM芯片的平均功耗为5.294mW,卷积运算的能量效率为0.31-49.12 TOPS/W,稀疏度和重量比特精度分别在0.1至0.9和1b至16b之间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信