Analog digital converter using Josephson junctions

M. Klein
{"title":"Analog digital converter using Josephson junctions","authors":"M. Klein","doi":"10.1109/ISSCC.1977.1155643","DOIUrl":null,"url":null,"abstract":"four-bit sequential approximation analog-to-digital unit integrated on a 6.25 mm square chip. It operates in liquid helium at 4.2K. Timing signals are supplied by external equip ment situated at room temperature for the experiment. Figure 1 shows a schematic diagram of the experimental chip. The analog input, which is unipolar and amplitude limited to 8 mA, is applied to a superconducting loop. Across this loop is a Josephson junction switch and the circuit performs the sample-and-hold function. The gate is held in the voltage state by a dc bias for acquisition of signal current from the external input, which is connected across the gate. A sample command pulse to a control line on the gate cancels the bias to return the gate to the superconducting state, trapping the acquired signal as a circulating super current in the loop and holding it for the duration of the A/D conversion cycle. Design considerations for the sample and hold circuit included: use of a large enough inductance so that a large number of flux quanta were stored per least significant bit (LSB); shaping of the junction to give a threshold characteristic capable of resolving an LSB; large enough junction to accept the maximum change between conversion cycles; critical damping of the circuit; junction recovery to the superconducting state at the end of the acquisition period in the presence of the largest rate of change of input signal.","PeriodicalId":416313,"journal":{"name":"1977 IEEE International Solid-State Circuits Conference. Digest of Technical Papers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1977 IEEE International Solid-State Circuits Conference. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.1977.1155643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

four-bit sequential approximation analog-to-digital unit integrated on a 6.25 mm square chip. It operates in liquid helium at 4.2K. Timing signals are supplied by external equip ment situated at room temperature for the experiment. Figure 1 shows a schematic diagram of the experimental chip. The analog input, which is unipolar and amplitude limited to 8 mA, is applied to a superconducting loop. Across this loop is a Josephson junction switch and the circuit performs the sample-and-hold function. The gate is held in the voltage state by a dc bias for acquisition of signal current from the external input, which is connected across the gate. A sample command pulse to a control line on the gate cancels the bias to return the gate to the superconducting state, trapping the acquired signal as a circulating super current in the loop and holding it for the duration of the A/D conversion cycle. Design considerations for the sample and hold circuit included: use of a large enough inductance so that a large number of flux quanta were stored per least significant bit (LSB); shaping of the junction to give a threshold characteristic capable of resolving an LSB; large enough junction to accept the maximum change between conversion cycles; critical damping of the circuit; junction recovery to the superconducting state at the end of the acquisition period in the presence of the largest rate of change of input signal.
模拟数字转换器使用约瑟夫森结
集成在6.25毫米方形芯片上的四位顺序近似模数单元。它在4.2K的液氦中运行。定时信号由位于室温下的外部设备提供。图1为实验芯片的原理图。模拟输入是单极的,振幅限制为8 mA,应用于超导环路。在这个环路上是一个约瑟夫森结开关,电路执行采样和保持功能。栅极通过直流偏置保持在电压状态,用于从连接在栅极上的外部输入获取信号电流。对栅极控制线的采样命令脉冲取消偏置,使栅极返回超导状态,将采集的信号捕获为环路中的循环超级电流,并在A/D转换周期期间保持它。样品和保持电路的设计考虑包括:使用足够大的电感,以便每个最低有效位(LSB)存储大量的磁通量子;对结进行整形,以给出能够分辨LSB的阈值特性;足够大的结,以接受转换周期之间的最大变化;电路的临界阻尼;在输入信号变化率最大的情况下,在采集周期结束时结恢复到超导状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信