Jun Wang, Jianguo Liu, Dongyao Wang, Jiyong Pang, G. Shen, Jinhui Chen
{"title":"Load Balance Based Dynamic Inter-Cell Interference Coordination for Relay Enhanced Cellular Network","authors":"Jun Wang, Jianguo Liu, Dongyao Wang, Jiyong Pang, G. Shen, Jinhui Chen","doi":"10.1109/VETECS.2012.6240092","DOIUrl":null,"url":null,"abstract":"The relaying technologies have been considered in cellular networks (such as LTE-A and WiMAX) as one of the advanced techniques to extend the network coverage and enhance the cell edge performance. However, the relays will bring extra interference to macro cell and the popular solution is to allocate different bandwidth for relays and base stations. In this paper, we use proportional fairness mode to formulate this frequency resource allocation optimization problem and presented a new adaptive method (both centralized and distributed algorithm) with interference coordination based on dynamic traffic load for cell-edge relay deployment. This resource allocation scheme with both intra and inter cell interference coordination (ICIC) can greatly improve the spectrum efficiency compared with conventional static ICIC schemes, in which the cell- edge bandwidth is equally allocated among the neighboring base stations or relays. Based on our performance evaluation, the proposed method can flexibly adapt the case when the traffic load distribution is non-uniformed or mobility occurs frequently, which accordingly exploit the cellular capacity with the experience enhancement of the cell-edge users.","PeriodicalId":333610,"journal":{"name":"2012 IEEE 75th Vehicular Technology Conference (VTC Spring)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 75th Vehicular Technology Conference (VTC Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETECS.2012.6240092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The relaying technologies have been considered in cellular networks (such as LTE-A and WiMAX) as one of the advanced techniques to extend the network coverage and enhance the cell edge performance. However, the relays will bring extra interference to macro cell and the popular solution is to allocate different bandwidth for relays and base stations. In this paper, we use proportional fairness mode to formulate this frequency resource allocation optimization problem and presented a new adaptive method (both centralized and distributed algorithm) with interference coordination based on dynamic traffic load for cell-edge relay deployment. This resource allocation scheme with both intra and inter cell interference coordination (ICIC) can greatly improve the spectrum efficiency compared with conventional static ICIC schemes, in which the cell- edge bandwidth is equally allocated among the neighboring base stations or relays. Based on our performance evaluation, the proposed method can flexibly adapt the case when the traffic load distribution is non-uniformed or mobility occurs frequently, which accordingly exploit the cellular capacity with the experience enhancement of the cell-edge users.