An Adaptive FCM Probabilistic Neural Networks with Confidence Criteria

Gao Zhihua, B. Kerong, Zhang Linke
{"title":"An Adaptive FCM Probabilistic Neural Networks with Confidence Criteria","authors":"Gao Zhihua, B. Kerong, Zhang Linke","doi":"10.1109/ICICIS.2011.45","DOIUrl":null,"url":null,"abstract":"A novel PNN classifier for underwater vehicle noise source recognition is proposed. Such PNN classifier based on adaptive FCM algorithm and confidence criteria. Confidence criteria recognition technique allows the classifier recognize the abrupt noise without any abrupt noise samples to train base classifier, which is difficult to the traditional PNN classifier. The adaptive FCM algorithm can optimize classifier topology structure and save recognition time. Experimental results show adaptive FCM-PNN which has better generalization performance and real time performance than RBF neural network and the traditional PNN, and can recognize the abrupt noise effectually through confidence criteria.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A novel PNN classifier for underwater vehicle noise source recognition is proposed. Such PNN classifier based on adaptive FCM algorithm and confidence criteria. Confidence criteria recognition technique allows the classifier recognize the abrupt noise without any abrupt noise samples to train base classifier, which is difficult to the traditional PNN classifier. The adaptive FCM algorithm can optimize classifier topology structure and save recognition time. Experimental results show adaptive FCM-PNN which has better generalization performance and real time performance than RBF neural network and the traditional PNN, and can recognize the abrupt noise effectually through confidence criteria.
带置信准则的自适应FCM概率神经网络
提出了一种新的用于水下航行器噪声源识别的PNN分类器。该PNN分类器基于自适应FCM算法和置信度准则。置信准则识别技术允许分类器识别突发噪声,而不需要任何突发噪声样本来训练基分类器,这是传统PNN分类器难以做到的。自适应FCM算法可以优化分类器拓扑结构,节省识别时间。实验结果表明,自适应FCM-PNN具有比RBF神经网络和传统PNN更好的泛化性能和实时性,并能通过置信度准则有效识别突发噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信