Yuan Jiang, P. Mathias, G. Whyatt, Charles J. Freeman, F. Zheng, V. Glezakou, R. Rousseau, Philip K. Koech, D. Malhotra, D. Heldebrant
{"title":"Attempting to Break the 2 GJ/tonne CO2 Barrier; Development of an Advanced Water-Lean Capture Solvent From Molecules to Detailed Process Design","authors":"Yuan Jiang, P. Mathias, G. Whyatt, Charles J. Freeman, F. Zheng, V. Glezakou, R. Rousseau, Philip K. Koech, D. Malhotra, D. Heldebrant","doi":"10.2139/ssrn.3379731","DOIUrl":null,"url":null,"abstract":"Solvent-based post-combustion CO2 capture is an energy-intensive process primarily driven by the energy required to regenerate the CO2 capture solvent. Researchers are currently focused on developing drop-in solvent replacements for commercial amine solvents with lower regeneration energies. One approach to reducing the regeneration energy of a solvent is to reduce its water content, thereby reducing unnecessary condensing and consequent boiling in the process. There are a number of water-lean solvent formulations currently under development that allow for water contents below 10% by weight, versus more than 60% for commercial aqueous amines. One solvent class, CO2-Binding Organic Liquids (CO2BOLs), shows promise to reduce the parasitic load to a coal-fired power plant but has been impeded by high viscosities at high CO2 loadings. In this paper, we perform a preliminary modeling study of a new low-viscosity CO2BOL solvent and assess the energetics of different process stripper configurations. By tailoring the process configuration with the unique aspects of the solvent reboiler duties below 2 GJ/tonne CO2 could be achievable. Further, this study suggests that there is no one-size-fits-all process optimum configuration for solvents, and therefore optimal configurations will be solvent specific.","PeriodicalId":298553,"journal":{"name":"SRPN: Other Water Sustainability (Topic)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SRPN: Other Water Sustainability (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3379731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Solvent-based post-combustion CO2 capture is an energy-intensive process primarily driven by the energy required to regenerate the CO2 capture solvent. Researchers are currently focused on developing drop-in solvent replacements for commercial amine solvents with lower regeneration energies. One approach to reducing the regeneration energy of a solvent is to reduce its water content, thereby reducing unnecessary condensing and consequent boiling in the process. There are a number of water-lean solvent formulations currently under development that allow for water contents below 10% by weight, versus more than 60% for commercial aqueous amines. One solvent class, CO2-Binding Organic Liquids (CO2BOLs), shows promise to reduce the parasitic load to a coal-fired power plant but has been impeded by high viscosities at high CO2 loadings. In this paper, we perform a preliminary modeling study of a new low-viscosity CO2BOL solvent and assess the energetics of different process stripper configurations. By tailoring the process configuration with the unique aspects of the solvent reboiler duties below 2 GJ/tonne CO2 could be achievable. Further, this study suggests that there is no one-size-fits-all process optimum configuration for solvents, and therefore optimal configurations will be solvent specific.