Relevance vector machines for DMT based systems

A. Tahat, N. Galatsanos
{"title":"Relevance vector machines for DMT based systems","authors":"A. Tahat, N. Galatsanos","doi":"10.1109/CONIELECOMP.2010.5440801","DOIUrl":null,"url":null,"abstract":"In this paper, an improved channel estimation method in discrete multi-tone (DMT) communication systems based on sparse Bayesian learning relevance vector machine (RVM) method is presented. The Bayesian frame work can obtain sparse solutions to regression tasks utilizing models linear in parameters. By exploiting a probabilistic Bayesian learning framework, the sparse Bayesian learning provides the accurate model for estimation and consequently equalization. We consider frequency domain equalization (FEQ) using the improved channel estimate at both the transmitter and receiver and compare the resulting bit error rate (BER) performance curves for both approaches and various techniques. Simulation results show that the performance of the RVM method is superior to the traditional least squares technique.","PeriodicalId":236039,"journal":{"name":"2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2010.5440801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, an improved channel estimation method in discrete multi-tone (DMT) communication systems based on sparse Bayesian learning relevance vector machine (RVM) method is presented. The Bayesian frame work can obtain sparse solutions to regression tasks utilizing models linear in parameters. By exploiting a probabilistic Bayesian learning framework, the sparse Bayesian learning provides the accurate model for estimation and consequently equalization. We consider frequency domain equalization (FEQ) using the improved channel estimate at both the transmitter and receiver and compare the resulting bit error rate (BER) performance curves for both approaches and various techniques. Simulation results show that the performance of the RVM method is superior to the traditional least squares technique.
基于DMT系统的相关向量机
提出了一种改进的基于稀疏贝叶斯学习相关向量机(RVM)方法的离散多音通信系统信道估计方法。贝叶斯框架可以利用参数线性的模型获得回归任务的稀疏解。通过利用概率贝叶斯学习框架,稀疏贝叶斯学习为估计和均衡提供了准确的模型。我们考虑在发送端和接收端使用改进的信道估计的频域均衡(FEQ),并比较两种方法和各种技术的误码率(BER)性能曲线。仿真结果表明,RVM方法的性能优于传统的最小二乘方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信