Fixed-Point Quantization of 3D Convolutional Neural Networks for Energy-Efficient Action Recognition

Hyunhoon Lee, Younghoon Byun, Seokha Hwang, Sunggu Lee, Youngjoo Lee
{"title":"Fixed-Point Quantization of 3D Convolutional Neural Networks for Energy-Efficient Action Recognition","authors":"Hyunhoon Lee, Younghoon Byun, Seokha Hwang, Sunggu Lee, Youngjoo Lee","doi":"10.1109/ISOCC.2018.8649987","DOIUrl":null,"url":null,"abstract":"In this paper, 3D convolutional neural networks (CNNs) are simplified to reduce the energy consumption of the action recognition process. Instead of using floating-point weights and input values, which results in a huge amount of processing energy, we introduce a systematic way to quantize all the values of 3D CNNs without degrading the recognition accuracy. Simulation results show that, compared to the baseline CNN architecture, the proposed method significantly reduces the computational complexity as well as the memory requirements.","PeriodicalId":127156,"journal":{"name":"2018 International SoC Design Conference (ISOCC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2018.8649987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, 3D convolutional neural networks (CNNs) are simplified to reduce the energy consumption of the action recognition process. Instead of using floating-point weights and input values, which results in a huge amount of processing energy, we introduce a systematic way to quantize all the values of 3D CNNs without degrading the recognition accuracy. Simulation results show that, compared to the baseline CNN architecture, the proposed method significantly reduces the computational complexity as well as the memory requirements.
节能动作识别中三维卷积神经网络的定点量化
本文对三维卷积神经网络(cnn)进行了简化,以减少动作识别过程的能量消耗。在不降低识别精度的前提下,我们引入了一种系统的方法来量化3D cnn的所有值,而不是使用浮点权值和输入值,这将导致大量的处理能量。仿真结果表明,与基线CNN架构相比,该方法显著降低了计算复杂度和内存需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信