Tower equivalence and Lusztig’s truncated Fourier transform

J. Michel
{"title":"Tower equivalence and Lusztig’s truncated Fourier transform","authors":"J. Michel","doi":"10.1090/bproc/167","DOIUrl":null,"url":null,"abstract":"If \n\n \n f\n f\n \n\n denotes the truncated Lusztig Fourier transform, we show that the image by \n\n \n f\n f\n \n\n of the normalized characteristic function of a Coxeter element is the alternate sum of the exterior powers of the reflection representation, and that any class function is tower equivalent to its image by \n\n \n f\n f\n \n\n. In particular this gives a proof of the results of Chapuy and Douvropoulos on “Coxeter factorizations with generalized Jucys-Murphy weights and matrix tree theorems for reflection groups” for irreducible spetsial reflection groups, based on Deligne-Lusztig combinatorics.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

If f f denotes the truncated Lusztig Fourier transform, we show that the image by f f of the normalized characteristic function of a Coxeter element is the alternate sum of the exterior powers of the reflection representation, and that any class function is tower equivalent to its image by f f . In particular this gives a proof of the results of Chapuy and Douvropoulos on “Coxeter factorizations with generalized Jucys-Murphy weights and matrix tree theorems for reflection groups” for irreducible spetsial reflection groups, based on Deligne-Lusztig combinatorics.
塔等效和Lusztig截断傅里叶变换
如果f f表示截断的Lusztig傅里叶变换,我们证明了Coxeter元素的归一化特征函数的f的像是反射表示的外幂的交替和,并且任何类函数都等于它的f的像。特别地,基于delig - lusztig组合给出了Chapuy和Douvropoulos关于不可约特殊反射群的“广义juys - murphy权的Coxeter分解和反射群的矩阵树定理”的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信