An improvement in reflow performance of plastic packages

T. Cho, Kyujin Lee, Min-Ho Lee, Seung-Ho Ahn, S. Oh
{"title":"An improvement in reflow performance of plastic packages","authors":"T. Cho, Kyujin Lee, Min-Ho Lee, Seung-Ho Ahn, S. Oh","doi":"10.1109/ECTC.1996.550757","DOIUrl":null,"url":null,"abstract":"The influence of die pad design and die attach adhesive on the resistance of a thin small out line package (TSOP) to reflow cracking has been investigated. Mechanisms of reflow cracking were studied using scanning acoustic tomography (SAT) and scanning electron micrography (SEM). For more precise analysis, computational calculations of stress were conducted. In the case of dimpled die pad, an experimental die adhesive with lower moisture absorption and higher adhesion strength showed excellent resistance to reflow cracking, resulting in crack-free performance in level I preconditioning tests. However,packages with the slot lead frame failed in level I preconditioning tests. The failure was due to the interfacial delamination between the bottom surface of die and the epoxy molding compound (EMC). SAT showed that the delamination initiated at the periphery of the slot during temperature cycling in preconditioning. During the subsequent soaking and IR reflow, moisture condensed at the delaminated interface generated the high vapour pressure that exceeded the fracture strength of the EMC. In other words, the interfacial integrity between the bottom surface of die and the molding compound is critical to the reflow cracking in packages with slot lead frame.","PeriodicalId":143519,"journal":{"name":"1996 Proceedings 46th Electronic Components and Technology Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 Proceedings 46th Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.1996.550757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of die pad design and die attach adhesive on the resistance of a thin small out line package (TSOP) to reflow cracking has been investigated. Mechanisms of reflow cracking were studied using scanning acoustic tomography (SAT) and scanning electron micrography (SEM). For more precise analysis, computational calculations of stress were conducted. In the case of dimpled die pad, an experimental die adhesive with lower moisture absorption and higher adhesion strength showed excellent resistance to reflow cracking, resulting in crack-free performance in level I preconditioning tests. However,packages with the slot lead frame failed in level I preconditioning tests. The failure was due to the interfacial delamination between the bottom surface of die and the epoxy molding compound (EMC). SAT showed that the delamination initiated at the periphery of the slot during temperature cycling in preconditioning. During the subsequent soaking and IR reflow, moisture condensed at the delaminated interface generated the high vapour pressure that exceeded the fracture strength of the EMC. In other words, the interfacial integrity between the bottom surface of die and the molding compound is critical to the reflow cracking in packages with slot lead frame.
塑料包装回流性能的改进
研究了模垫设计和模贴胶对薄型小外线封装(TSOP)抗回流开裂性能的影响。利用扫描声层析成像(SAT)和扫描电镜(SEM)研究了回流裂纹的形成机理。为了进行更精确的分析,进行了应力计算。在凹模垫的情况下,具有较低吸湿率和较高粘接强度的实验模胶具有优异的抗回流开裂性能,在一级预处理试验中具有无裂纹的性能。但是,带槽引线框架的封装在I级预处理测试中失败。失效的原因是模具底面与环氧树脂复合材料(EMC)之间的界面分层。SAT结果表明,在温度循环过程中,分层发生在槽的外围。在随后的浸泡和红外回流过程中,分层界面处的水汽凝结产生了超过EMC断裂强度的高蒸气压。换句话说,模具底面与成型化合物之间的界面完整性对槽引线框架封装的回流开裂至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信