Efficient social network analysis in big data architectures

I. Soric, Davor Dinjar, Marko Stajcer, Dražen Oreščanin
{"title":"Efficient social network analysis in big data architectures","authors":"I. Soric, Davor Dinjar, Marko Stajcer, Dražen Oreščanin","doi":"10.23919/MIPRO.2017.7973640","DOIUrl":null,"url":null,"abstract":"Social network analysis (SNA) is the application of graph theory to understand, categorize and quantify relationships in a social network. It can be a great tool to improve analytic capabilities in any field, for example marketing analytics, churn prediction, health care, etc. In terms of SNA, network structure is defined by nodes, edges and metrics which quantify the importance or influence of certain nodes in the network or relationship strength between nodes. Algorithms for network metrics calculation are complex and that makes SNA difficult to implement in big data environments on large datasets with many nodes and edges. In this paper we will elaborate how to efficiently and performance wise perform SNA and visualize results of the analysis on large datasets using increasingly popular GraphX and JavaScript libraries.","PeriodicalId":203046,"journal":{"name":"2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIPRO.2017.7973640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Social network analysis (SNA) is the application of graph theory to understand, categorize and quantify relationships in a social network. It can be a great tool to improve analytic capabilities in any field, for example marketing analytics, churn prediction, health care, etc. In terms of SNA, network structure is defined by nodes, edges and metrics which quantify the importance or influence of certain nodes in the network or relationship strength between nodes. Algorithms for network metrics calculation are complex and that makes SNA difficult to implement in big data environments on large datasets with many nodes and edges. In this paper we will elaborate how to efficiently and performance wise perform SNA and visualize results of the analysis on large datasets using increasingly popular GraphX and JavaScript libraries.
大数据架构中高效的社会网络分析
社会网络分析(Social network analysis, SNA)是应用图论来理解、分类和量化社会网络中的关系。它可以成为提高任何领域分析能力的好工具,例如营销分析、客户流失预测、医疗保健等。就SNA而言,网络结构由节点、边和度量来定义,这些度量量化了网络中某些节点的重要性或影响,或节点之间的关系强度。网络度量计算算法复杂,这使得SNA难以在具有许多节点和边缘的大数据环境中实现。在本文中,我们将详细阐述如何使用日益流行的GraphX和JavaScript库高效、高效地执行SNA,并对大型数据集的分析结果进行可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信