D. N. Thanh, U. Erkan, V. Prasath, Vivek Kumar (Ph.D), N. Hien
{"title":"A Skin Lesion Segmentation Method for Dermoscopic Images Based on Adaptive Thresholding with Normalization of Color Models","authors":"D. N. Thanh, U. Erkan, V. Prasath, Vivek Kumar (Ph.D), N. Hien","doi":"10.1109/ICEEE2019.2019.00030","DOIUrl":null,"url":null,"abstract":"In medical image processing, the skin lesion segmentation problem plays a vital role, because it is necessary to improve quality of extracting skin lesion features to classify the skin lesion. Hence, imaging diagnosis systems can detect skin cancer early. It is necessary to treat the skin cancer, especially, melanoma – one of the most dangerous form of skin cancer. In this paper, we proposed two adaptive methods to estimate the global threshold used for skin lesion segmentation based on normalization of the color models: RGB and XYZ. The skin lesion segmentation based on our proposed methods gives better result than the Otsu segmentation method regarding the grayscale model. This comparison is assessed on popular metrics for image segmentation, such as Dice and Jaccard scores. Experiments are tested on the famous ISIC dataset.","PeriodicalId":407725,"journal":{"name":"2019 6th International Conference on Electrical and Electronics Engineering (ICEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Electrical and Electronics Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE2019.2019.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
In medical image processing, the skin lesion segmentation problem plays a vital role, because it is necessary to improve quality of extracting skin lesion features to classify the skin lesion. Hence, imaging diagnosis systems can detect skin cancer early. It is necessary to treat the skin cancer, especially, melanoma – one of the most dangerous form of skin cancer. In this paper, we proposed two adaptive methods to estimate the global threshold used for skin lesion segmentation based on normalization of the color models: RGB and XYZ. The skin lesion segmentation based on our proposed methods gives better result than the Otsu segmentation method regarding the grayscale model. This comparison is assessed on popular metrics for image segmentation, such as Dice and Jaccard scores. Experiments are tested on the famous ISIC dataset.