A Skin Lesion Segmentation Method for Dermoscopic Images Based on Adaptive Thresholding with Normalization of Color Models

D. N. Thanh, U. Erkan, V. Prasath, Vivek Kumar (Ph.D), N. Hien
{"title":"A Skin Lesion Segmentation Method for Dermoscopic Images Based on Adaptive Thresholding with Normalization of Color Models","authors":"D. N. Thanh, U. Erkan, V. Prasath, Vivek Kumar (Ph.D), N. Hien","doi":"10.1109/ICEEE2019.2019.00030","DOIUrl":null,"url":null,"abstract":"In medical image processing, the skin lesion segmentation problem plays a vital role, because it is necessary to improve quality of extracting skin lesion features to classify the skin lesion. Hence, imaging diagnosis systems can detect skin cancer early. It is necessary to treat the skin cancer, especially, melanoma – one of the most dangerous form of skin cancer. In this paper, we proposed two adaptive methods to estimate the global threshold used for skin lesion segmentation based on normalization of the color models: RGB and XYZ. The skin lesion segmentation based on our proposed methods gives better result than the Otsu segmentation method regarding the grayscale model. This comparison is assessed on popular metrics for image segmentation, such as Dice and Jaccard scores. Experiments are tested on the famous ISIC dataset.","PeriodicalId":407725,"journal":{"name":"2019 6th International Conference on Electrical and Electronics Engineering (ICEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Electrical and Electronics Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE2019.2019.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

In medical image processing, the skin lesion segmentation problem plays a vital role, because it is necessary to improve quality of extracting skin lesion features to classify the skin lesion. Hence, imaging diagnosis systems can detect skin cancer early. It is necessary to treat the skin cancer, especially, melanoma – one of the most dangerous form of skin cancer. In this paper, we proposed two adaptive methods to estimate the global threshold used for skin lesion segmentation based on normalization of the color models: RGB and XYZ. The skin lesion segmentation based on our proposed methods gives better result than the Otsu segmentation method regarding the grayscale model. This comparison is assessed on popular metrics for image segmentation, such as Dice and Jaccard scores. Experiments are tested on the famous ISIC dataset.
基于颜色模型归一化自适应阈值的皮肤镜图像损伤分割方法
在医学图像处理中,皮肤损伤分割问题起着至关重要的作用,因为提高提取皮肤损伤特征的质量是对皮肤损伤进行分类的必要条件。因此,影像诊断系统可以早期发现皮肤癌。治疗皮肤癌是必要的,尤其是黑色素瘤——皮肤癌中最危险的一种。在本文中,我们提出了两种基于颜色模型归一化的自适应方法来估计用于皮肤病变分割的全局阈值:RGB和XYZ。基于该方法的皮肤病变分割在灰度模型上优于Otsu分割方法。这种比较是在图像分割的流行指标上进行评估的,比如Dice和Jaccard分数。实验在著名的ISIC数据集上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信