FISOFM: firearms identification based on SOFM model of neural network

C. Kou, C. Tung, H. Fu
{"title":"FISOFM: firearms identification based on SOFM model of neural network","authors":"C. Kou, C. Tung, H. Fu","doi":"10.1109/CCST.1994.363783","DOIUrl":null,"url":null,"abstract":"Firearms identification (FI) has been becoming a serious and increasing part of crime investigation for the last two decades. We propose a solution to FI using Neural Network (NN) technology. Lots of methods have been using in FI such as extractor mark, breach mark, ejector mark, and chambering mark identification, etc. We choose the chambering mark identification as our method in this research. It is a simple and useful method for crime investigation. Because of the principle of tool mark, we may identify the firearms. The chambering mark needs to be scanned, preprocessed, segmented, described, reduced and enhanced, and will be recognized by its individual characteristic via the Self-Organizing Feature Map(SOFM) model of NN. It will ease the burden of forensic laboratory's because they do not need to identify the tool mark via microscope.<<ETX>>","PeriodicalId":314758,"journal":{"name":"1994 Proceedings of IEEE International Carnahan Conference on Security Technology","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Carnahan Conference on Security Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.1994.363783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Firearms identification (FI) has been becoming a serious and increasing part of crime investigation for the last two decades. We propose a solution to FI using Neural Network (NN) technology. Lots of methods have been using in FI such as extractor mark, breach mark, ejector mark, and chambering mark identification, etc. We choose the chambering mark identification as our method in this research. It is a simple and useful method for crime investigation. Because of the principle of tool mark, we may identify the firearms. The chambering mark needs to be scanned, preprocessed, segmented, described, reduced and enhanced, and will be recognized by its individual characteristic via the Self-Organizing Feature Map(SOFM) model of NN. It will ease the burden of forensic laboratory's because they do not need to identify the tool mark via microscope.<>
基于SOFM神经网络模型的枪械识别
近二十年来,枪支识别已成为犯罪调查中一个日益重要的组成部分。我们提出了一种利用神经网络(NN)技术解决FI的方法。FI中使用了许多方法,如提取标记、缺口标记、喷射器标记和腔室标记识别等。在本研究中,我们选择了室标识别作为我们的研究方法。这是一种简单有效的侦查方法。根据工具标记的原理,我们可以对枪支进行识别。对腔室标记进行扫描、预处理、分割、描述、约简和增强,并通过神经网络的自组织特征映射(SOFM)模型根据其个体特征进行识别。这将减轻法医实验室的负担,因为他们不需要通过显微镜来识别工具标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信