A ten-parameter model for the static hysteresis simulation of ferromagnetic materials

F. R. Fulginei, G. Lozito, A. Salvini
{"title":"A ten-parameter model for the static hysteresis simulation of ferromagnetic materials","authors":"F. R. Fulginei, G. Lozito, A. Salvini","doi":"10.1109/AEIT.2015.7415264","DOIUrl":null,"url":null,"abstract":"This work proposes a model with dynamic parameters based on the classic Jiles-Atherton model for magnetic hysteresis. The goal of this study is to investigate whether the improved model is able to generalize the material behavior correctly when minor loops are involved. Two non-linear optimization techniques are used for parameters identification: a hybrid algorithm based on Genetic Algorithm (GA), Trust-Region-Reflective (TRR) and Levemberg-Marquardt (LM), and a novel continuous technique called Continuous Flock of Starlings Optimization (CFSO). Hysteresis loops used as reference were generated with the Preisach model, and the analysis is performed on a wide set of virtual materials and excitation waveforms.","PeriodicalId":368119,"journal":{"name":"2015 AEIT International Annual Conference (AEIT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEIT.2015.7415264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work proposes a model with dynamic parameters based on the classic Jiles-Atherton model for magnetic hysteresis. The goal of this study is to investigate whether the improved model is able to generalize the material behavior correctly when minor loops are involved. Two non-linear optimization techniques are used for parameters identification: a hybrid algorithm based on Genetic Algorithm (GA), Trust-Region-Reflective (TRR) and Levemberg-Marquardt (LM), and a novel continuous technique called Continuous Flock of Starlings Optimization (CFSO). Hysteresis loops used as reference were generated with the Preisach model, and the analysis is performed on a wide set of virtual materials and excitation waveforms.
铁磁材料静态滞回模拟的十参数模型
本文在经典的Jiles-Atherton磁滞模型的基础上,提出了一个带动态参数的磁滞模型。本研究的目的是探讨当涉及小回路时,改进的模型是否能够正确地概括材料的行为。采用两种非线性优化技术进行参数辨识:一种基于遗传算法(GA)、信任区域反射(TRR)和leemberg - marquardt (LM)的混合算法,以及一种新的连续算法——连续椋鸟群优化(CFSO)。利用Preisach模型生成了作为参考的磁滞回线,并对多种虚拟材料和激励波形进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信