Research on WEB Cache Prediction Recommend Mechanism Based on Usage Pattern

Lin Jianhui, H. Tianshu, Yang Chao
{"title":"Research on WEB Cache Prediction Recommend Mechanism Based on Usage Pattern","authors":"Lin Jianhui, H. Tianshu, Yang Chao","doi":"10.1109/WKDD.2008.9","DOIUrl":null,"url":null,"abstract":"Cache prefetching technique can improve the hit ratio and expedite users visiting speed. After analyzed the recommend system in e-business, this paper studied the characteristics how user visit Web page and proposed a Web prefetching recommender system based on usage pattern. This system cluster user behavior through an improved ant colony algorithm, then usage pattern can be abstracted from these classes through sequence mining. These sequence patterns are applied to forecast the coming behavior of users thus improve the hit ratio of system. Experiment result proves the validity of the system.","PeriodicalId":101656,"journal":{"name":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2008.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Cache prefetching technique can improve the hit ratio and expedite users visiting speed. After analyzed the recommend system in e-business, this paper studied the characteristics how user visit Web page and proposed a Web prefetching recommender system based on usage pattern. This system cluster user behavior through an improved ant colony algorithm, then usage pattern can be abstracted from these classes through sequence mining. These sequence patterns are applied to forecast the coming behavior of users thus improve the hit ratio of system. Experiment result proves the validity of the system.
基于使用模式的WEB缓存预测推荐机制研究
缓存预取技术可以提高命中率,加快用户访问速度。在分析电子商务推荐系统的基础上,研究了用户访问网页的特点,提出了一种基于使用模式的Web预取推荐系统。该系统通过改进的蚁群算法对用户行为进行聚类,然后通过序列挖掘从这些类中提取用户的使用模式。这些序列模式用于预测用户的未来行为,从而提高系统的命中率。实验结果证明了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信