A Modular Simulation Platform for Training Robots via Deep Reinforcement Learning and Multibody Dynamics

S. Benatti, A. Tasora, Dario Fusai, D. Mangoni
{"title":"A Modular Simulation Platform for Training Robots via Deep Reinforcement Learning and Multibody Dynamics","authors":"S. Benatti, A. Tasora, Dario Fusai, D. Mangoni","doi":"10.1145/3365265.3365274","DOIUrl":null,"url":null,"abstract":"In this work we focus on the role of Multibody Simulation in creating Reinforcement Learning virtual environments for robotic manipulation, showing a versatile, efficient and open source toolchain to create directly from CAD models. Using the Chrono::Solidworks plugin we are able to create robotic environments in the 3D CAD software Solidworks® and later convert them into PyChrono models (PyChrono is an open source Python module for multibody simulation). In addition, we demonstrate how collision detection can be made more efficient by introducing a limited number of contact primitives instead of performing collision detection and evaluation on complex 3D meshes, still reaching a policy able to avoid unwanted collisions. We tested this approach on a 6DOF robot Comau Racer3: the robot, together with a 2 fingers gripper (Hand-E by Robotiq) was modelled using Solidworks®, imported as a PyChrono model and then a NN was trained in simulation to control its motor torques to reach a target position. To demonstrate the versatility of this toolchain we also repeated the same procedure to model and then train the ABB IRB 120 robotic arm.","PeriodicalId":358714,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Automation, Control and Robots","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Automation, Control and Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365265.3365274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work we focus on the role of Multibody Simulation in creating Reinforcement Learning virtual environments for robotic manipulation, showing a versatile, efficient and open source toolchain to create directly from CAD models. Using the Chrono::Solidworks plugin we are able to create robotic environments in the 3D CAD software Solidworks® and later convert them into PyChrono models (PyChrono is an open source Python module for multibody simulation). In addition, we demonstrate how collision detection can be made more efficient by introducing a limited number of contact primitives instead of performing collision detection and evaluation on complex 3D meshes, still reaching a policy able to avoid unwanted collisions. We tested this approach on a 6DOF robot Comau Racer3: the robot, together with a 2 fingers gripper (Hand-E by Robotiq) was modelled using Solidworks®, imported as a PyChrono model and then a NN was trained in simulation to control its motor torques to reach a target position. To demonstrate the versatility of this toolchain we also repeated the same procedure to model and then train the ABB IRB 120 robotic arm.
基于深度强化学习和多体动力学的机器人训练模块化仿真平台
在这项工作中,我们专注于多体仿真在为机器人操作创建强化学习虚拟环境中的作用,展示了一个通用、高效和开源的工具链,可以直接从CAD模型创建。使用Chrono::Solidworks插件,我们能够在3D CAD软件Solidworks®中创建机器人环境,然后将它们转换为PyChrono模型(PyChrono是一个用于多体仿真的开源Python模块)。此外,我们演示了如何通过引入有限数量的接触原语来提高碰撞检测的效率,而不是在复杂的3D网格上执行碰撞检测和评估,仍然达到能够避免不必要碰撞的策略。我们在一个6DOF机器人Comau Racer3上测试了这种方法:使用Solidworks®对机器人和一个2指夹持器(Robotiq的手- e)进行建模,导入为PyChrono模型,然后在仿真中训练一个神经网络来控制其电机扭矩以达到目标位置。为了展示该工具链的多功能性,我们还重复了相同的过程来建模,然后训练ABB IRB 120机械臂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信