Machine Learning-Based Prediction of Drug-Resistant Epilepsy

Y. Shin, Heesang Eum, Kwang Su Cha, Ki-Young Jung
{"title":"Machine Learning-Based Prediction of Drug-Resistant Epilepsy","authors":"Y. Shin, Heesang Eum, Kwang Su Cha, Ki-Young Jung","doi":"10.35615/epilia.2021.00298","DOIUrl":null,"url":null,"abstract":"data from used a a convolutional neural network, a temporal convolutional network to learn the EEG patterns of patients with drug-resistant epilepsy. Data from 978 EEG examinations were available for training and testing. best performance an accuracy of of Our models predicted drug-resistant epilepsy better than drug-sensitive epilepsy. that EEG contain information predictive of epilepsy; the performance of the current model insufficient for clinical use to predict drug-resis-tant epilepsy. Our findings warrant further investigation to identify EEG markers of drug-resistance and to increase model performance to a level sufficient to aid in clinical decision-making.","PeriodicalId":132321,"journal":{"name":"Epilia: Epilepsy and Community","volume":"402 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilia: Epilepsy and Community","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35615/epilia.2021.00298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

data from used a a convolutional neural network, a temporal convolutional network to learn the EEG patterns of patients with drug-resistant epilepsy. Data from 978 EEG examinations were available for training and testing. best performance an accuracy of of Our models predicted drug-resistant epilepsy better than drug-sensitive epilepsy. that EEG contain information predictive of epilepsy; the performance of the current model insufficient for clinical use to predict drug-resis-tant epilepsy. Our findings warrant further investigation to identify EEG markers of drug-resistance and to increase model performance to a level sufficient to aid in clinical decision-making.
基于机器学习的耐药癫痫预测
使用卷积神经网络、时间卷积神经网络来学习耐药癫痫患者的脑电图模式。978次脑电图检查的数据可用于训练和测试。我们的模型对耐药癫痫的预测优于药物敏感性癫痫。脑电图包含预示癫痫的信息;目前模型的性能不足以用于临床预测耐药癫痫。我们的研究结果值得进一步研究,以确定脑电图耐药标志物,并将模型性能提高到足以帮助临床决策的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信