Effects of domain-specific SVM kernel design on the robustness of automatic speech recognition

J. Yousafzai, Z. Cvetković, Peter Sollich
{"title":"Effects of domain-specific SVM kernel design on the robustness of automatic speech recognition","authors":"J. Yousafzai, Z. Cvetković, Peter Sollich","doi":"10.1109/ICDSP.2013.6622705","DOIUrl":null,"url":null,"abstract":"We consider the effects of incorporating prior knowledge of features which correlate with phoneme identity as well as perceptual invariances into the design of SVM kernels for phoneme classification in high-dimensional spaces of acoustic waveforms of speech. To this end we explore products and linear combinations of polynomial and radial basis function kernels to design composite kernels which are invariant to waveform sign and time shift, and capture the dynamics of energy evolution in the time-frequency plane. Experiments show marked improvements in phoneme classification as a result of this custom kernel design. This demonstrates that even in high-dimensional feature spaces, careful kernel design based on prior knowledge of the problem domain can have significant payback.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the effects of incorporating prior knowledge of features which correlate with phoneme identity as well as perceptual invariances into the design of SVM kernels for phoneme classification in high-dimensional spaces of acoustic waveforms of speech. To this end we explore products and linear combinations of polynomial and radial basis function kernels to design composite kernels which are invariant to waveform sign and time shift, and capture the dynamics of energy evolution in the time-frequency plane. Experiments show marked improvements in phoneme classification as a result of this custom kernel design. This demonstrates that even in high-dimensional feature spaces, careful kernel design based on prior knowledge of the problem domain can have significant payback.
特定领域支持向量机核设计对自动语音识别鲁棒性的影响
我们考虑将与音素身份相关的特征的先验知识以及感知不变性纳入支持向量机核的设计中,用于语音声学波形的高维空间中的音素分类。为此,我们探索多项式和径向基函数核的乘积和线性组合,设计出对波形符号和时移不变化的复合核,并在时频平面上捕捉能量演化的动态。实验表明,这种自定义内核设计在音素分类方面有显著的改进。这表明,即使在高维特征空间中,基于问题域的先验知识进行仔细的内核设计也可以获得显著的回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信