Intrinsic dielectric stack reliability of a high performance bulk planar 20nm replacement gate high-k metal gate technology and comparison to 28nm gate first high-k metal gate process
W. McMahon, C. Tian, S. Uppal, H. Kothari, M. Jin, G. Larosa, T. Nigam, A. Kerber, B. Linder, E. Cartier, W. Lai, Y. Liu, R. Ramachandran, U. Kwon, B. Parameshwaran, S. Krishnan, V. Narayanan
{"title":"Intrinsic dielectric stack reliability of a high performance bulk planar 20nm replacement gate high-k metal gate technology and comparison to 28nm gate first high-k metal gate process","authors":"W. McMahon, C. Tian, S. Uppal, H. Kothari, M. Jin, G. Larosa, T. Nigam, A. Kerber, B. Linder, E. Cartier, W. Lai, Y. Liu, R. Ramachandran, U. Kwon, B. Parameshwaran, S. Krishnan, V. Narayanan","doi":"10.1109/IRPS.2013.6532016","DOIUrl":null,"url":null,"abstract":"We compare the intrinsic reliability of the dielectric stack of a high performance bulk planar 20nm replacement gate technology to the reliability of high performance bulk planar 28 nm gate first high-k metal gate (HKMG) technology, developed within the IBM Alliance. Comparable N/PFET TDDB and comparable/improved NFET PBTI are shown to be achievable for similar Tinv. The choice to not include channel silicon germanium as a PFET performance element in the 20nm technology impact NBTI, driving a potential tradeoff between NBTI and PBTI. The complexity of integrating such performance elements while accounting for reliability/performance tradeoffs demands their selection during technology definition with due consideration to realistic product usage conditions.","PeriodicalId":138206,"journal":{"name":"2013 IEEE International Reliability Physics Symposium (IRPS)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2013.6532016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We compare the intrinsic reliability of the dielectric stack of a high performance bulk planar 20nm replacement gate technology to the reliability of high performance bulk planar 28 nm gate first high-k metal gate (HKMG) technology, developed within the IBM Alliance. Comparable N/PFET TDDB and comparable/improved NFET PBTI are shown to be achievable for similar Tinv. The choice to not include channel silicon germanium as a PFET performance element in the 20nm technology impact NBTI, driving a potential tradeoff between NBTI and PBTI. The complexity of integrating such performance elements while accounting for reliability/performance tradeoffs demands their selection during technology definition with due consideration to realistic product usage conditions.
我们比较了高性能块体平面20nm替代栅极技术和高性能块体平面28nm栅极首高k金属栅极(HKMG)技术的介电堆叠的固有可靠性,该技术由IBM联盟开发。可比较的N/ fet TDDB和可比较/改进的fet PBTI在类似的Tinv下是可以实现的。在20nm技术中不包含通道硅锗作为pet性能元件的选择影响了NBTI,推动了NBTI和PBTI之间的潜在权衡。在考虑可靠性/性能权衡的同时,集成这些性能元素的复杂性要求在技术定义期间对其进行选择,并适当考虑实际的产品使用条件。